REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/17712
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorPąk, Karol-
dc.date.accessioned2024-12-10T08:57:58Z-
dc.date.available2024-12-10T08:57:58Z-
dc.date.issued2024-
dc.identifier.citationFormalized Mathematics, Volume 32, Issue 1, Pages 65–75pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/17712-
dc.description.abstractConway’s surreal numbers have a fascinating algebraic structure, which we try to formalise in the Mizar system. In this article, building on our previous work establishing that the surreal numbers fulfil the ring properties, we construct the inverse element for any non-zero number. For that purpose, we formalise the definition of the inverse element formulated in Section Properties of Division of Conway’s book. In this way we show formally in the Mizar system that surreal numbers satisfy all nine properties of a field.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectsurreal numberspl
dc.subjectConway’s gamepl
dc.titleInverse Element for Surreal Numberpl
dc.typeArticlepl
dc.rights.holder© 2024 The Author(s)pl
dc.rights.holderCC BY-SA 3.0 licensepl
dc.identifier.doi10.2478/forma-2024-0005-
dc.description.AffiliationFaculty of Computer Science, University of Białystok, Polandpl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesYves Bertot. A short presentation of Coq. In Otmane Aït Mohamed, César A. Munoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order Logics (TPHOLs 2008), volume 5170 of LNCS, pages 12–16. Springer, 2008. doi:10.1007/978-3-540-71067-7_3.pl
dc.description.referencesYves Bertot and Pierre Casteran. Interactive Theorem Proving and Program Development. Springer, 2004. ISBN 3540208542.pl
dc.description.referencesJohn Horton Conway. On Numbers and Games. A K Peters Ltd., Natick, MA, second edition, 2001. ISBN 1-56881-127-6.pl
dc.description.referencesDonald E. Knuth. Surreal Numbers: How Two Ex-students Turned on to Pure Mathematics and Found Total Happiness. Addison-Wesley, 1974.pl
dc.description.referencesLionel Elie Mamane. Surreal numbers in Coq. In Jean-Christophe Filliˆatre, Christine Paulin-Mohring, and Benjamin Werner, editors, Types for Proofs and Programs, TYPES 2004, volume 3839 of LNCS, pages 170–185. Springer, 2004. doi:10.1007/11617990 11.pl
dc.description.referencesTobias Nipkow and Gerwin Klein. Concrete Semantics: With Isabelle/HOL. Springer, 2014.pl
dc.description.referencesTobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL– A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002. ISBN 3-540-43376-7.pl
dc.description.referencesSteven Obua. Partizan games in Isabelle/HOLZF. In Kamel Barkaoui, Ana Cavalcanti, and Antonio Cerone, editors, Theoretical Aspects of Computing– ICTAC 2006, volume 4281 of LNCS, pages 272–286. Springer, 2006.pl
dc.description.referencesKarol Pąk. Conway numbers– formal introduction. Formalized Mathematics, 31(1): 193–203, 2023. doi:10.2478/forma-2023-0018.pl
dc.description.referencesKarol Pąk. Integration of game theoretic and tree theoretic approaches to Conway numbers. Formalized Mathematics, 31(1):205–213, 2023. doi:10.2478/forma-2023-0019.pl
dc.description.referencesKarol Pąk. The ring of Conway numbers in Mizar. Formalized Mathematics, 31(1): 215–228, 2023. doi:10.2478/forma-2023-0020.pl
dc.description.referencesKarol Pąk and Cezary Kaliszyk. Conway normal form: Bridging approaches for comprehensive formalization of surreal numbers. In Yves Bertot, Temur Kutsia, and Michael Norrish, editors, 15th International Conference on Interactive Theorem Proving, ITP 2024, September 9-14, 2024, Tbilisi, Georgia, volume 309 of LIPIcs, pages 29:1–29:18. Schloss Dagstuhl– Leibniz-Zentrum f¨ ur Informatik, 2024. doi:10.4230/LIPICS.ITP.2024.29.pl
dc.description.referencesDierk Schleicher and Michael Stoll. An introduction to Conway’s games and numbers. Moscow Mathematical Journal, 6:359–388, 2006. doi:10.17323/1609-4514-2006-6-2-359-388.pl
dc.description.referencesMakarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle framework. In Otmane Ait Mohamed, C´esar Mu˜noz, and Sofi` ene Tahar, editors, Theorem Proving in Higher Order Logics, pages 33–38. Springer Berlin Heidelberg, 2008.pl
dc.identifier.eissn1898-9934-
dc.description.volume32pl
dc.description.issue1pl
dc.description.firstpage65pl
dc.description.lastpage75pl
dc.identifier.citation2Formalized Mathematicspl
dc.identifier.orcid0000-0002-7099-1669-
Występuje w kolekcji(ach):Artykuły naukowe (WInf)
Formalized Mathematics, 2024, Volume 32, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
Inverse-Element-for-Surreal-Number.pdf310,73 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons