Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/17710
Pełny rekord metadanych
Pole DC | Wartość | Język |
---|---|---|
dc.contributor.author | Schwarzweller, Christoph | - |
dc.date.accessioned | 2024-12-10T07:54:49Z | - |
dc.date.available | 2024-12-10T07:54:49Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Formalized Mathematics, Volume 32, Issue 1, Pages 33-46 | pl |
dc.identifier.issn | 1426-2630 | - |
dc.identifier.uri | http://hdl.handle.net/11320/17710 | - |
dc.description.abstract | We continue the formalization of field theory in Mizar [2], [3], [4]. We introduce separability of polynomials and field extensions: a polynomial is separable, if it has no multiple roots in its splitting field; an algebraic extension E of F is separable, if the minimal polynomial of each a ∈ E is separable. We prove among others that a polynomial q(X) is separable if and only if the gcd of q(X) and its (formal) derivation equals 1– and that a irreducible polynomial q(X) is separable if and only if its derivation is not 0– and that q(X) is separable if and only if the number of q(X)’s roots in some field extension equals the degree of q(X). Afield F is called perfect if all irreducible polynomials over F are separable, and as a consequence every algebraic extension of F is separable. Every field with characteristic 0 is perfect [13]. To also consider separability in fields with prime characteristic p we define the rings Rp = { ap | a ∈ R} and the polynomials Xn −a for a ∈ R. Then we show that a field F with prime characteristic p is separable if and only if F = Fp and that finite fields are perfect. Finally we prove that for fields F ⊆ K ⊆ E where E is a separable extension of F both E is separable over K and K is separable over F. | pl |
dc.language.iso | en | pl |
dc.publisher | DeGruyter Open | pl |
dc.rights | Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) | pl |
dc.rights.uri | https://creativecommons.org/licenses/by-sa/3.0/ | pl |
dc.subject | separable polynomials | pl |
dc.subject | perfect fields | pl |
dc.subject | separable extensions | pl |
dc.title | Separable Polynomials and Separable Extensions | pl |
dc.type | Article | pl |
dc.rights.holder | © 2024 The Author(s) | pl |
dc.rights.holder | CC BY-SA 3.0 license | pl |
dc.identifier.doi | 10.2478/forma-2024-0003 | - |
dc.description.Affiliation | Christoph Schwarzweller - Institute of Informatics, University of Gdańsk, Poland | pl |
dc.description.references | Broderick Arneson and Piotr Rudnicki. Primitive roots of unity and cyclotomic polynomials. Formalized Mathematics, 12(1):59–67, 2004. | pl |
dc.description.references | Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3319-20614-1. doi:10.1007/978-3-319-20615-8_17. | pl |
dc.description.references | Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6. | pl |
dc.description.references | Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. On algebraic hierarchies in mathematical repository of Mizar. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), volume 8 of Annals of Computer Science and Information Systems, pages 363–371, 2016. doi:10.15439/2016F520. | pl |
dc.description.references | Nathan Jacobson. Basic Algebra I. Dover Books on Mathematics, 1985. | pl |
dc.description.references | Artur Korniłowicz. Flexary connectives in Mizar. Computer Languages, Systems & Structures, 44:238–250, December 2015. doi:10.1016/j.cl.2015.07.002. | pl |
dc.description.references | Serge Lang. Algebra. Springer Verlag, 2002 (Revised Third Edition). | pl |
dc.description.references | Heinz Luneburg. Die grundlegenden Strukturen der Algebra (in German). Oldenbourg Wisenschaftsverlag, 1999. | pl |
dc.description.references | Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461-470, 2001. | pl |
dc.description.references | Knut Radbruch. Algebra I. Lecture Notes, University of Kaiserslautern, Germany, 1991. | pl |
dc.description.references | Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559–564, 2001. | pl |
dc.description.references | Christoph Schwarzweller and Artur Korniłowicz. Characteristic of rings. Prime fields. Formalized Mathematics, 23(4):333–349, 2015. doi:10.1515/forma-2015-0027. | pl |
dc.description.references | Christoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Simple extensions. Formalized Mathematics, 31(1):287–298, 2023. doi:10.2478/forma-2023-0023. | pl |
dc.identifier.eissn | 1898-9934 | - |
dc.description.volume | 32 | pl |
dc.description.issue | 1 | pl |
dc.description.firstpage | 33 | pl |
dc.description.lastpage | 46 | pl |
dc.identifier.citation2 | Formalized Mathematics | pl |
dc.identifier.orcid | 0000-0001-9587-8737 | - |
Występuje w kolekcji(ach): | Formalized Mathematics, 2024, Volume 32, Issue 1 |
Pliki w tej pozycji:
Plik | Opis | Rozmiar | Format | |
---|---|---|---|---|
Separable-Polynomials-and-Separable-Extensions.pdf | 303,5 kB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL