Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/17669
Pełny rekord metadanych
Pole DC | Wartość | Język |
---|---|---|
dc.contributor.author | Wnuczek, Krystyna | - |
dc.contributor.author | Podkościelna, Beata | - |
dc.date.accessioned | 2024-12-02T08:44:05Z | - |
dc.date.available | 2024-12-02T08:44:05Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Modern problems and solutions in environmental protection - 2021. Post-conference monograph, edited by Urszula Czyżewska, Marek Bartoszewicz, Róża Sawczuk, Białystok 2021, s. 39-49 | pl |
dc.identifier.isbn | 978-83-7431-692-7 | - |
dc.identifier.uri | http://hdl.handle.net/11320/17669 | - |
dc.description.abstract | In this work a synthesis of commercially available polycarbonates as well as selected applications of these unique polymers are discussed. A traditional method of synthesis using phosgene and Bisphenol A, as well as methods based on the transesterification of methyl carbonate and diphenyl carbonate are presented. The advantages and disadvantages of the above procedures are shown. The possibilities of replacing the phosgene technology, used by most polycarbonate manufacturers, with more enVironmentally friendly methods were assessed. In addition, the work includes general characteristics of polycarbonates and their wide application. | pl |
dc.language.iso | en | pl |
dc.publisher | University of Bialystok Press | pl |
dc.subject | polycarbonate | pl |
dc.subject | Bisphenol A | pl |
dc.subject | phosgene | pl |
dc.title | Polycarbonates - synthesis, properties and environmental impact | pl |
dc.type | Book chapter | pl |
dc.rights.holder | © Copyright by Uniwersytet w Białymstoku, Białystok 2021 | pl |
dc.description.Affiliation | Krystyna Wnuczek - Maria Curie-Sklodowska University, Institute of Chemical Science, Faculty of Chemistry, Department of Polymer Chemistry, Gliniana 33, 20-614, Lublin, Poland | pl |
dc.description.Affiliation | Beata Podkościelna - Maria Curie-Sklodowska University, Institute of Chemical Science, Faculty of Chemistry, Department of Polymer Chemistry, Gliniana 33, 20-614, Lublin, Poland | pl |
dc.description.references | Anastas P., Eghbali N. (2010) Green Chemistry: Principles and Practice. Chemical Society Reviews 39: 301-312 | pl |
dc.description.references | Andrzejewski J., Misra M., Mohanty AK. (2018) Polycarbonate biocomposites reinforced with a hybrid filler system of recycled carbon fiber and biocarbon: Preparation and thermomechanical characterization. Journal of Applied Polymer Science 135(28): 46449. | pl |
dc.description.references | Bair H.E., Falcone D.R., Hellman M.Y, Johnson G.E., Kelleher P.G. (1987) The hydrolytic stability of glass fiber reinforced poly(butylene terephthalate), poly(ethylene terephthalate) and polycarbonate. Journal of Applied Polymer Science 26(6): 1777. | pl |
dc.description.references | Cabaton N.J., Wadia P.R., Rubin B.S., Zalko D., Schaeberle C.M., Askenase M.H. (2011) Perinatal exposure to environmentally relevant levels of bisphenol A decreases fertility and fecundity in CD-1 mice. Environmental Health Perspectives 119: 547-552. | pl |
dc.description.references | Christopher W.F., Fox D.W. (1962) Polycarbonates, Reinhol Publishing Co, New York, 122-140. | pl |
dc.description.references | Clarke C.J., Tu W.C., Levers O., Bröhl A., Hallett J.P. (2018) Green and Sustainable Solvents in Chemical Processes. Chemical Reviews 118: 747-880. | pl |
dc.description.references | Collin S., Bussilère P.O., Thérias S., Lambert J.M., Perdereau J., Gardette J.L.(2012) Physicochemical and mechanical impacts of photo-ageing on bisphenol a polycarbonate,. Polymer Degradation and Stability 97(11): 2284-2293. | pl |
dc.description.references | Darensbourg D.J., Wilson S.J. (2011) Synthesis of Poly(indene carbonate) from Indene Oxide and Carbon Dioxide-A Polycarbonate with a Rigid Backbone. Journal of the American Chemical Society 133: 18610-18613. | pl |
dc.description.references | Distaso M., Quaranta E. (2006) Highly selective carbamation of aliphatic diamines under mild conditions using Sc(OTf)3 as catalyst and dimethyl carbonate as a phosgene substitute. Applied Catalysis B: Environmental 66: 72-80. | pl |
dc.description.references | Dong X., Ren B., Sun Z., Li C, Zhang X., Kong M., Zheng S., Dionysiou D.D. (2019) Monodispersed CuFe₂O₂ nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation. Applied Catalysis B: Environmental 253, 206-217. | pl |
dc.description.references | Egan M. (2014) Is It Safe? BPA and the Struggle to Define the Safety of Chemicals. Isis 105(1): 254. | pl |
dc.description.references | Erythropel H.C., Zimmerman J.B., de Winter T.M., Petitjean L., Melnikov F., Lam CH., Lounsbury A.W., Mellor K.E., Jankovic N.Z., Tu Q., Pincus L.N., Falinski M.M., Shi W, Coish P., Plata D.L., Anastas P.T. (2018) The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chemistry 20: 1929-1961. | pl |
dc.description.references | Eshaghi A., Graeli A. (2014) Optical and electrical properties of indium tin oxide (ITO) nanostructured thin films deposited on polycarbonate substrates "thickness effect". Optik 125: 1478-1481. | pl |
dc.description.references | Feng J., Zhuo R.X., Zhang S.Z. (2012) Renaissance of Aliphatic Polycarbonates: New Techniques and Biomedical Applications. Progress in Polymer Science 37: 211-236. | pl |
dc.description.references | Fiege H., Voges H.W., Hamamoto T., Umemura S., Iwata T., Miki H., Fujita Y., Buysch H.J., Garbe D., Paulus W. (2000) Phenol Derivates Ullmann's Encyclopedia of Industrial Chemistry, Vo!. 25, Wiley-VCH, Weinheim. | pl |
dc.description.references | Fukuoka S., Kawamura M., Komiya K., Tojo M., Hachiya H., Hasegawa K., Aminaka M., Okamoto H., Fukawa I., Konno S. (2003) Green and Sustainable Chemistry in Practice: Development and Industrialization of a Novel Process for Polycarbonate Production from CO₂ without Using Phosgene. Green Chemistry 5:497-507. | pl |
dc.description.references | Geens T., Aerts D., Berthot C., Bourguignon J.P., Goeyens L., Lecomte P. (2012) A review of dietary and non-dietary exposure to bisphenol-A Food and Chemical Toxicology 50: 3725-3740. | pl |
dc.description.references | Geens T., Goeyens L., Covaci A. (2011) Are potential sources for human exposure to bisphenol-A overlooked? International Journal of Hygiene and Environmental Health 214: 339-347. | pl |
dc.description.references | Hammani S., Moulai-Mostefa N., Benyahia L., Tassin J.F. (2012) Effects of shear during the cooling on the rheology and morphology of immiscible polymer blends. Journal of Polymer Research 19: 994. | pl |
dc.description.references | Hauenstein O., Reiter M., Agarwal S., Rieger B., Greiner A. (2016) Bio-based polycarbonate from limonene oxide and CO₂ with high molecular weight, excellent thermal resistance, hardness and transparency. Green Chemistry 18: 760-770. | pl |
dc.description.references | He M.Y., Sun Y.H., Han B.X. (2013) Highly efficient electrochemical reduction of CO₂ to CH₄ in an ionic liquid using a metal-organic framework cathode. Chemical Science 52: 9620-9633. | pl |
dc.description.references | Hubacher M.B. (1959) Bis(p-hydroxyphenyl)acetic Acid. Journal of Organic Chemistry 24: 1949. | pl |
dc.description.references | Huang H., Shi Y., Lv G., Liu Y., Wang Q. (2015) Flame resistance and aging mechanism of flame retardant polycarbonate sheet containing linear phenolic resin charring agent. Polymer Degradation and Stability 122: 139-145. | pl |
dc.description.references | KaraziI S.M., Ahad U., Benyounis K.Y. (2017) Laser Micromachining for Transparent Materials, in: Reference Module in Materials Science and Materials Engineering. | pl |
dc.description.references | Kim W.B., Lee J.S. (1999) A new process for the synthesis of diphenyl carbonate from dimethyl carbonate and phenol over heterogeneous catalysts. Catalysis Letters 59: 83. | pl |
dc.description.references | Kim W.B., Park K.H., Lee J.S. (2002) Coupled oxidative carbonylation of bisphenol-A and phenol into phenylcarbonate-ended polycarbonate precursors over a homogeneous Pd-Ce redox catalyst. Journal of Molecular Catalysis A: Chemical 184: 39-49. | pl |
dc.description.references | King J.A (1999) Synthesis of Polycarbonates Handbook of Polycarbonate Science and Technology, CRC Press, New York, 7-22. | pl |
dc.description.references | Kuran W., Sobczak M., Listoś T., Debek C., Florjanczyk Z. (2000) New route to oligocarbonate diols suitable for the synthesis of polyurethane elastomers. Polymer 41: 8531-8541. | pl |
dc.description.references | Lago E., Toth P.S., Pugliese G., Pellegrinia V., Bonaccorso F. (2016) Solution blending preparation of polycarbonate/graphene composite: boosting the mechanical and electrical properties. RSC Advances 6: 97931-97940. | pl |
dc.description.references | Laurenti M., Bianco S., Castellino M., Garino N., Virga A., Pirri C.F., Mandracci P. (2016) Toward Plastic Smart Windows: Optimization of Indium Tin Oxide Electrodes for the Synthesis of Electrochromic Devices on Polycarbonate Substrates. ACS Applied Materials and Interfaces (ACS Applied Materials & Interfaces) 8: 8032-8042. | pl |
dc.description.references | Lee L.H. (1964) Mechanisms of thermal degradation of phenolic condensation polymers. I. Studies on the thermal stability of polycarbonate. Journal of Polymer Science 2: 2859. | pl |
dc.description.references | Liang Y, Su K., Cao L., Gao Y., Li Z. (2019) Study on the transesterification and mechanism of bisphenol A and dimethyl carbonate catalyzed by organotin oxide. Chemical Papers 73: 2171-2182. | pl |
dc.description.references | Levchik S.Y., Weil E.D. (2005) Overview of recent developments in the flame retardancy of polycarbonates. Polymer International 54:981-998. | pl |
dc.description.references | Li X., Franke A.A. (2015) Improvement of bisphenol A quantitation from urine by LCMS. Analytical and Bioanalytical Chemistry 407, 3869-3874. | pl |
dc.description.references | Michalowicz J. (2014) Bisphenol A-sources, toxicity and biotransformation. Environmental Toxicology and Pharmacology 37: 738-758. | pl |
dc.description.references | Naik P.U., Refes K., Sadaka F., Brachais C.H., Boni G., Couvercelle J.P., Picquet M., Plasseraud L. (2012) Multiblock copolymers of PPC with oligomeric PBS: with low brittle-toughness transition temperature. Polymer Chemistry 3: 1475-1480. | pl |
dc.description.references | Niu H. Y, Yao J., Wang Y., Wang G.Y. (2007) V-Cu Composite Oxide Catalyst for Transesterification of Dimethyl Carbonate with Phenol to Diphenyl Carbonate Chinese Journal of Catalysis 8: 355-358. | pl |
dc.description.references | Ozyildiz G., Olmez-Hanci T., Arslan-Alaton I. (2019) Effect of nano-scale, reduced graphene oxide on the degradation of bisphenol A in real tertiary treated wastewater with the persulfate/UV-C process. Applied Catalysis A: General 254: 135-144. | pl |
dc.description.references | Pivnenko K., Pedersen G.A, Eriksson E., Astrup T.F. (2015) Bisphenol A and its structural analogues in household waste paper. Waste Management 44: 39-47. | pl |
dc.description.references | Rogers L., Jensen K.F. (2019) Continuous manufacturing - the Green Chemistry promise? Green Chemistry 21: 3481-3498. | pl |
dc.description.references | Samikannu A., Konwar L.J., Maki-Arvela P., Mikkola J.P. (2019) Renewable N-doped active carbons as efficient catalysts for direct synthesis of cycliC carbonates from epoxides and CO₂, Applied Catalysis B Environmental 241 : 41-51. | pl |
dc.description.references | Schnell H. (1964) Polymer Reviews, Chemistry and Physics of Polycarbonates, Vol. 9, Interscience Publishers, New York. | pl |
dc.description.references | Serini V. (2000) Polycarbonates: in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim. | pl |
dc.description.references | Shu L., Caiyun S., Jiaqi Y., Fengyu W., Zhenyang W., Rui C., Qingxia H., Jianxin M. (2019) Preparation and Properties of Polycarbonate/Polystyrene Bead Alloy via Solvent Evaporation Method. Materials Science inc. Nanomaterials & Polymers 4: 13755-13759. | pl |
dc.description.references | Sun A.F., Kang L., Xiang X., Lil H., Luol X., Luol R., Lu1 C., Peng X. (2016) Recent advances and progress in the detection of bisphenol A Analytical and Bioanalytical Chemistry 408: 6913-6927. | pl |
dc.description.references | Sun J., Kuckling D. (2016) Synthesis of high-molecular-weight aliphatic polycarbonates by organo-catalysis. Polymer Chemistry 7: 1642-1649. | pl |
dc.description.references | Suyama T., Tokiwa Y., Ouichanpagdee P., Kanagawa T., Kamagata Y. (1998) Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Applied and Environmental Microbiology 64(12): 5008-5011. | pl |
dc.description.references | Suna J., Kuckling D. (2016) Synthesis of high-molecular-weight aliphatic polycarbonates by organo-catalysis. Polymer Chemistry 7: 1642-1649. | pl |
dc.description.references | Tarbell D.S., Longosz E.J. (1959) Thermal Decomposition of Mixed Carboxylic-Carbonic Anhydrides; Factors Affecting Ester Formation. Journal of Organic Chemistry 24: 774. | pl |
dc.description.references | Thoene M., Dzika E., Gonkowski S., Wojtkiewicz J. (2020) Bisphenol S in food causes hormonal and obesogenic effects comparable to or worse than Bisphenol A Nutrients 12(2): 532. | pl |
dc.description.references | Tong D. S., Yao J., Wang Y., Niu H.Y., Wang G.Y. (2007) High selectivity to diphenyl carbonate synthesized via transesterification between dimethyl carbonate and phenol with C60-doped TiOr Journal of Molecular Catalysis 268: 120-126. | pl |
dc.description.references | Tundo P., Trotta EF, Moraglio G., Ligorati F. (1988) Alkylation of phenol with dimethyl carbonate over AlPO₄, Al₂O₃ and AlPO₄-Al₂O₃ catalysts. Industrial & Engineering Chemistry Research 27: 1565. | pl |
dc.description.references | Vandenberg .LN., Maffini M.V., Sonnenschein C., Rubin B.S., Soto A.M. (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocrine Reviews 30: 75-95. | pl |
dc.description.references | Wnuczek K., Puszka A., Klapiszewski L., Podkoscielna B. (2021) Preparation, thermal, and thermal-mechanical characterization of polymeric blends based on di(Meth)acrylate monomers. Polymers 13(6): 876. | pl |
dc.description.references | Zhencai Z., Fei X., Yaqin Z., Li C., Hongyan H., Zifeng Y., Zengxi L. (2020) A non-phosgene process for bioderived polycarbonate with high molecular weight and advanced property profile synthesized using amino acid ionic liquids as catalysts. Green Chemistry 22: 2534-2542. | pl |
dc.description.references | Zhu W., Pyo S.H., Wang P., You S., Yu C., Alido J., Liu J., Leong Y. (2018) Three-Dimensional Printing of Bisphenol A-Free Polycarbonates. ACS applied materials & interfaces 10(6): 5331-5339. | pl |
dc.description.references | Raport of Joint FAO/WHO Expert Meeting and Raport of Stakeholder Meeting on Bisphenol A, Toxicological and Health Aspects of Bisphenol A. (2010) WHO Library Cataloguing-in-Publication Data, Ottawa. | pl |
dc.description.references | US Patent 4201721, 1980. | pl |
dc.description.references | US Patent 6222002, 2001. | pl |
dc.description.references | https://bit.ly/3rB4iPI11.04.2021 | pl |
dc.description.firstpage | 39 | pl |
dc.description.lastpage | 49 | pl |
dc.identifier.citation2 | Modern problems and solutions in environmental protection - 2021. Post-conference monograph, edited by Urszula Czyżewska, Marek Bartoszewicz, Róża Sawczuk | pl |
dc.conference | XVI Międzynarodowa Interdyscyplinarna Konferencja „Current Environmental Issues – 2021”, Białystok 22-24 września 2021 r. | pl |
Występuje w kolekcji(ach): | Książki / Rozdziały (WUwB) XVI Międzynarodowa Interdyscyplinarna Konferencja „Current Environmental Issues-2021”, 22-24 września 2021 |
Pliki w tej pozycji:
Plik | Opis | Rozmiar | Format | |
---|---|---|---|---|
K_Wnuczek_B_Podkoscielna_Polycarbonates.pdf | 1,17 MB | Adobe PDF | Otwórz |
Pozycja jest chroniona prawem autorskim (Copyright © Wszelkie prawa zastrzeżone)