REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/16773
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorKlekotka, Urszula-
dc.contributor.authorSatuła, Dariusz-
dc.contributor.authorBasa, Anna-
dc.contributor.authorKalska-Szostko, Beata-
dc.date.accessioned2024-06-20T11:56:55Z-
dc.date.available2024-06-20T11:56:55Z-
dc.date.issued2020-
dc.identifier.citationMaterials, Volume 13, Issue 7 (2020), p. 1-12pl
dc.identifier.issn1996-1944-
dc.identifier.urihttp://hdl.handle.net/11320/16773-
dc.description.abstractThis study shows the influence of selected nonstandard surfactants on the growth and properties of magnetite nanoparticles. Particles were obtained using thermally decomposed iron (III) acetylacetonate in an organic environment. For synthesis, three different concentrations (4, 8, and 16 mmol) of tested surfactants were used. Five types of each long-chain carboxylic acid and amines were selected for stabilization of nanoparticles. Nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, and infrared spectroscopy. Magnetic properties of the nanoparticles were tested by conventional room temperature Mössbauer spectroscopy with and without external magnetic field. TEM images clearly showed that application of tertiary amines causes the nanoparticles to form nanoflowers, in contrast to other compounds, which do not show such growth. Influence of surfactant amount on growth regime depends on the nature of the substances. Mössbauer spectroscopy confirms differences in magnetic core composition as a result of the surfactant amount present in synthetic procedure.pl
dc.description.sponsorshipThe presented data was partially supported by EU funds via a project with contract numbers POPW.01.03.00-20-034/09-00, POPW.01.03.00-20-004/11-00, and by NCN funds with project number 2014/13/N/ST5/00568.pl
dc.language.isoenpl
dc.publisherMDPIpl
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/pl
dc.subjectiron oxide nanoparticlespl
dc.subjectmagnetite nanoparticlespl
dc.subjectsurfactantpl
dc.subjectsurface modificationpl
dc.subjectmagnetic propertiespl
dc.subjectstructural characterizationpl
dc.titleImportance of surfactant quantity and quality on growth regime of iron oxide nanoparticlespl
dc.typeArticlepl
dc.rights.holder© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) licensepl
dc.identifier.doi10.3390/ma13071747pl
dc.description.EmailUrszula Klekotka: u.klekotka@uwb.edu.plpl
dc.description.EmailDariusz Satuła: d.satula@uwb.edu.plpl
dc.description.EmailAnna Basa: abasa@uwb.edu.plpl
dc.description.EmailBeata Kalska-Szostko: kalska@uwb.edu.plpl
dc.description.AffiliationUrszula Klekotka - Faculty of Chemistry, University of Bialystok, Polandpl
dc.description.AffiliationDariusz Satuła - Faculty of Physics, University of Białystok, Polandpl
dc.description.AffiliationAnna Basa - Faculty of Chemistry, University of Bialystok, Polandpl
dc.description.AffiliationBeata Kalska-Szostko - Faculty of Chemistry, University of Bialystok, Polandpl
dc.description.referencesRosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena; Wiley&Sons Inc.: Hoboken, NJ, USA, 2012; ISBN 9780470541944.pl
dc.description.referencesYu, W.; Xie, H. A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. J. Nanomater. 2012, 2012, 435873.pl
dc.description.referencesKlekotka, U.; Satuła, D.; Spassov, S.; Kalska-Szostko, B. Surfactant dependence on physicochemical properties of magnetite nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2018, 537, 452–459.pl
dc.description.referencesIssa, B.; Obaidat, I.M.; Albiss, B.A.; Haik, Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 2013, 14, 21266–21305.pl
dc.description.referencesAkbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 2012, 7, 144.pl
dc.description.referencesRao, C.N.R.; Ramakrishna Matte, H.S.S.; Voggu, R.; Govindaraj, A. Recent progress in the synthesis of inorganic nanoparticles. Dalt. Trans. 2012, 41, 5089.pl
dc.description.referencesXu, J.; Sun, J.; Wang, Y.; Sheng, J.; Wang, F.; Sun, M. Application of iron magnetic nanoparticles in protein immobilization. Molecules 2014, 19, 11465–11486.pl
dc.description.referencesRobert, W.; Kelsall Ian, W.; Hamley, M.G. Nanotechnologie; Kurzydłowski, K., Ed.; PWN: Warsaw, Poland, 2008.pl
dc.description.referencesVékás, L.; Bica, D.; Marinica, O. Magnetic nanofludis stabilized with various chain length surfactants. Rom. Rep. Phys. 2006, 58, 257–267.pl
dc.description.referencesPankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. TOPICAL REVIEW. J. Phys. D. Appl. Phys. 2003, 36, R167.pl
dc.description.referencesSerna, C.J.; Veintemillas-Verdaguer, S.; González-Carreño, T.; Roca, A.G.; Tartaj, P.; Rebolledo, A.F.; Costo, R.; Morales, M.P. Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. Appl. Phys. 2009, 42, 224002.pl
dc.description.referencesCabrera, L.; Gutierrez, S.; Menendez, N.; Morales, M.P.; Herrasti, P. Magnetite nanoparticles: Electrochemical synthesis and characterization. Electrochim. Acta 2008, 53, 3436–3441.pl
dc.description.referencesKashanian, F.; Habibi-Rezaei, M.; Moosavi-Movahedi, A.A.; Bagherpour, A.R.; Vatani, M. The ambivalent effect of Fe3O4 nanoparticles on the urea-induced unfolding and dilution-based refolding of lysozyme F. Biomed. Mater. 2018, 13, 045014.pl
dc.description.referencesYelenich, O.V.; Solopan, S.O.; Greneche, J.M.; Belous, A.G. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core–shell structures. Solid State Sci. 2015, 46, 19–26.pl
dc.description.referencesBrown, P.; Alan Hatton, T.; Eastoe, J. Magnetic surfactants. Curr. Opin. Colloid Interface Sci. 2015, 20, 140–150.pl
dc.description.referencesLin, C.; Ho, K. Hyperthermia effect of surface-modified magnetite nanoparticles in a microfluidic system. NSTI-Nanotech 2007 2007, 2, 425–428.pl
dc.description.referencesHaun, J.B.; Yoon, T.J.; Lee, H.; Weissleder, R. Magnetic nanoparticle biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 291–304.pl
dc.description.referencesSalihov, S.V.; Ivanenkov, Y.A.; Krechetov, S.P.; Veselov, M.S.; Sviridenkova, N.V.; Savchenko, A.G.; Klyachko, N.L.; Golovin, Y.I.; Chufarova, N.V.; Beloglazkina, E.K.; et al. Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles. J. Magn. Magn. Mater. 2015, 394, 173–178.pl
dc.description.referencesRoychowdhury, A.; Pati, S.P.; Kumar, S.; Das, D. Effects of magnetite nanoparticles on optical properties of zinc sulfide in fluorescent-magnetic Fe3O4 /ZnS nanocomposites. Powder Technol. 2014, 254, 583–590.pl
dc.description.referencesMandal, M.; Kundu, S.; Ghosh, S.K.; Panigrahi, S.; Sau, T.K.; Yusuf, S.M.; Pal, T. Magnetite nanoparticles with tunable gold or silver shell. J. Colloid Interface Sci. 2005, 286, 187–194.pl
dc.description.referencesShokrollahi, H. A review of the magnetic properties, synthesis methods and applications of maghemite. J. Magn. Magn. Mater. 2017, 426, 74–81.pl
dc.description.referencesKalska-Szostko, B.; Orzechowska, E.; Wykowska, U. Organophosphorous modifications of multifunctional magnetic nanowires. Colloids Surf. B Biointerfaces 2013, 111, 509–516.pl
dc.description.referencesHuber, D. Synthesis, Properties, and Applications of Iron Nanoparticles. Small 2005, 1, 482–501.pl
dc.description.referencesHaracz, S.; Hilgendorff, M.; Rybka, J.D.; Giersig, M. Effect of surfactant for magnetic properties of iron oxide nanoparticles. Nucl. Instruments Methods Phys. Res. Sect. B 2015, 364, 120–126.pl
dc.description.referencesSalas, G.; Casado, C.; Teran, F.J.; Miranda, R.; Serna, C.J.; Morales, M.P. Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications. J. Mater. Chem. 2012, 22, 21065.pl
dc.description.referencesKrishnan, K.M. Fundamentals and Applications of Magnetic Materials; Oxford University Press: Oxford, UK, 2016; ISBN 9780199570447.pl
dc.description.referencesPérigo, E.A.; Hemery, G.; Sandre, O.; Ortega, D.; Garaio, E.; Plazaola, F.; Teran, F.J. Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2015, 2, 041302.pl
dc.description.referencesPankhurst, Q.; Jones, S.; Dobson, J. Applications of magnetic nanoparticles in biomedicine: The story so far. J. Phys. D. Appl. Phys. 2016, 49, 501002.pl
dc.description.referencesPsimadas, D.; Baldi, G.; Ravagli, C.; Comes Franchini, M.; Locatelli, E.; Innocenti, C.; Sangregorio, C.; Loudos, G. Comparison of the magnetic, radiolabeling, hyperthermic and biodistribution properties of hybrid nanoparticles bearing CoFe2O4and Fe304metal cores. Nanotechnology 2014, 25.pl
dc.description.referencesWijaya, A.; Brown, K.A.; Alper, J.D.; Hamad-Schifferli, K. Magnetic field heating study of Fe-doped Au nanoparticles. J. Magn. Magn. Mater. 2007, 309, 15–19.pl
dc.description.referencesHabib, A.H.; Ondeck, C.L.; Chaudhary, P.; Bockstaller, M.R.; McHenry, M.E. Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. J. Appl. Phys. 2008, 103, 07A307.pl
dc.description.referencesKalska-Szostko, B.; Rogowska, M.; Dubis, A.; Szyma ´nski, K. Enzymes immobilization on Fe3O4–gold nanoparticles. Appl. Surf. Sci. 2012, 258, 2783–2787.pl
dc.description.referencesSun, S.H.; Zeng, H. Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 2002, 124, 8204–8205.pl
dc.description.referencesKalska-Szostko, B.; Cydzik, M.; Satuła, D.; Giersig, M. Mössbauer Studies of Core-Shell Nanoparticles. Acta Phys. Pol. A 2011, 119, 3–5.pl
dc.description.referencesKalska, B.; Fumagalli, P.; Hilgendorff, M.; Giersig, M. Co/CoO core–shell nanoparticles—Temperaturedependent magneto-optic studies. Mater. Chem. Phys. 2008, 112, 1129–1132.pl
dc.description.referencesFang, M.; Ström, V.; Olsson, R.T.; Belova, L.; Rao, K.V. Particle size and magnetic properties dependence on growth temperature for rapid mixed co-precipitated magnetite nanoparticles. Nanotechnology 2012, 23, 145601.pl
dc.description.referencesPanda, R.N.; Gajbhiye, N.S.; Balaji, G. Magnetic properties of interacting single domain Fe3O4 particles. J. Alloys Compd. 2001, 326, 50–53.pl
dc.description.referencesGoss, C.J. Saturation magnetisation, coercivity and lattice parameter changes in the system Fe3O4 -γFe2O3, and their relationship to structure. Phys. Chem. Miner. 1988, 16, 164–171.pl
dc.description.referencesMote, V.; Purushotham, Y.; Dole, B. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 2012, 6, 6.pl
dc.description.referencesTomaszewski, P.E. The uncertainty in the grain size calculation from X-ray diffraction data. Phase Transit. 2013, 86, 260–266.pl
dc.description.referencesCoates, J. Interpretation of Infrared Spectra, A Practical Approach; Meyers, R.A., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2000; ISBN 9780470027318.pl
dc.description.referencesNamduri, H.; Nasrazadani, S. Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corros. Sci. 2008, 50, 2493–2497.pl
dc.description.referencesKalska-Szostko, B.; Wykowska, U.; Satuła, D. Magnetic nanoparticles of core-shell structure. Colloids Surf. A Physicochem. Eng. Asp. 2015, 481, 527–536.pl
dc.description.referencesKorecki, J.; Handke, B.; Spiridis, N.; Sle, T.; Flis-Kabulska, I.; Haber, J. Size effects in epitaxial films of magnetite. Thin Solid Films 2002, 412, 14–23.pl
dc.description.referencesKalska-Szostko, B.; Satuła, D.; Olszewski, W. Mössbauer spectroscopy studies of the magnetic properties of ferrite nanoparticles. Curr. Appl. Phys. 2015, 15, 226–231.pl
dc.description.referencesShepherd, J.P.; Koenitzer, J.W.; Aragn, R.; Spalek, J.; Honig, J.M. Heat capacity and entropy of nonstoichiometric magnetite Fe3(1-)O4 : The thermodynamic nature of the Verwey transition. Phys. Rev. B 1991, 43, 8461–8471.pl
dc.description.referencesKalska-Szostko, B.; Zubowska, M.; Satuła, D. Studies of the magnetite nanoparticles by means of Mössbauer spectroscopy. Acta Phys. Pol. A 2006, 109, 365–369.pl
dc.description.referencesDas, P.; Colombo, M.; Prosperi, D. Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids Surf. B Biointerfaces 2019, 174, 42–55.pl
dc.description.volume13pl
dc.description.issue7pl
dc.description.firstpage1pl
dc.description.lastpage12pl
dc.identifier.citation2Materialspl
dc.identifier.orcid0000-0002-1594-5889pl
dc.identifier.orcidbrakorcidpl
dc.identifier.orcid0000-0003-2331-1779pl
dc.identifier.orcidbrakorcidpl
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons