REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/16637
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorKostrzewa, Tomasz-
dc.contributor.authorWołosewicz, Karol-
dc.contributor.authorJamrozik, Marek-
dc.contributor.authorDrzeżdżon, Joanna-
dc.contributor.authorSiemińska, Julia-
dc.contributor.authorJacewicz, Dagmara-
dc.contributor.authorGórska - Ponikowska, Magdalena-
dc.contributor.authorKołaczkowski, Marcin-
dc.contributor.authorŁaźny, Ryszard-
dc.contributor.authorKuban - Jankowska, Alicja-
dc.date.accessioned2024-06-07T06:18:37Z-
dc.date.available2024-06-07T06:18:37Z-
dc.date.issued2021-
dc.identifier.citationInternational Journal of Molecular Sciences, Volume 22, Issue 19, 2021, p. 1-22pl
dc.identifier.issn1422-0067-
dc.identifier.urihttp://hdl.handle.net/11320/16637-
dc.description.abstractBreast cancer is the most common cancer of women—it affects more than 2 million women worldwide. PTP1B phosphatase can be one of the possible targets for new drugs in breast cancer therapy. In this paper, we present new curcumin derivatives featuring a 4-piperidone ring as PTP1B inhibitors and ROS inducers. We performed cytotoxicity analysis for twelve curcumin derivatives against breast cancer MCF-7 and MDA-MB-231 cell lines and the human keratinocyte HaCaT cell line. Furthermore, because curcumin is a known antioxidant, we assessed antioxidant effects in its derivatives. For the most potent cytotoxic compounds, we determined intracellular ROS and PTP1B phosphatase levels. Moreover, for curcumin and its derivatives, we performed real-time microscopy to observe the photosensitizing effect. Finally, computational analysis was performed for the curcumin derivatives with an inhibitory effect against PTP1B phosphatase to assess the potential binding mode of new inhibitors within the allosteric site of the enzyme. We observed that two tested compounds are better anticancer agents than curcumin. Moreover, we suggest that blocking the -OH group in phenolic compounds causes an increase in the cytotoxicity effect, even at a low concentration. Furthermore, due to this modification, a higher level of ROS is induced, which correlates with a lower level of PTP1B.pl
dc.description.sponsorshipThe studies concerning the antioxidant and anticancer role of curcumin and its derivatives were supported by the project POWR.03.05.00-00-z082/18 co-financed by the European Union through the European Social Fund under the Operational Programme Knowledge Education Development 2014–2020. KW, JS, and RL give thanks to the National Science Centre, Poland, grant number: 2014/15/B/ST5/04695 for the financial support for the synthesis part of this research.pl
dc.language.isoenpl
dc.publisherMDPIpl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectcurcumin derivativespl
dc.subjectPTP1B phosphatasepl
dc.subjectbreast cancerpl
dc.subjectROS generationpl
dc.titleCurcumin and Its New Derivatives: Correlation between Cytotoxicity against Breast Cancer Cell Lines, Degradation of PTP1B Phosphatase and ROS Generationpl
dc.typeArticlepl
dc.rights.holder© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.pl
dc.identifier.doi10.3390/ijms221910368-
dc.description.EmailTomasz Kostrzewa: : tomasz.kostrzewa@gumed.edu.plpl
dc.description.EmailKarol Wołosewicz: k.wolosewicz@uwb.edu.plpl
dc.description.EmailMarek Jamrozik: marek.jamrozik@doctoral.uj.edu.plpl
dc.description.EmailJoanna Drzezdżon: joanna.drzezdzon@ug.edu.plpl
dc.description.EmailJulia Siemińska: julia.sieminska@umb.edu.plpl
dc.description.EmailDagmara Jacewicz: dagmara.jacewicz@ug.edu.plpl
dc.description.EmailMagdalena Górska-Ponikowska: magdalena.gorska-ponikowska@gumed.edu.plpl
dc.description.EmailMarcin Kołaczkowski: marcin.kolaczkowski@uj.edu.plpl
dc.description.EmailRyszard Łaźny: lazny@uwb.edu.plpl
dc.description.EmailAlicja Kuban-Jankowska: alicja.kuban-jankowska@gumed.edu.plpl
dc.description.AffiliationTomasz Kostrzewa - Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Polandpl
dc.description.AffiliationKarol Wołosewicz - Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland;pl
dc.description.AffiliationMarek Jamrozik - Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Polandpl
dc.description.AffiliationJoanna Drzeżdżon - Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Polandpl
dc.description.AffiliationJulia Siemińska - Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Polandpl
dc.description.AffiliationDagmara Jacewicz - Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Polandpl
dc.description.AffiliationMagdalena Górska-Ponikowska - Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Polandpl
dc.description.AffiliationMarcin Kołaczkowski - Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Polandpl
dc.description.AffiliationRyszard Łaźny - Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Polandpl
dc.description.AffiliationAlicja Kuban-Jankowska - Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Polandpl
dc.description.referencesPriyadarsini, K.; Gandhi, W.; Kunwar, A. Important chemical structural features of curcumin and its derivatives: How do they influence their anticancer activity? Indian J. Biochem. Biophys. 2020, 57, 228–235.pl
dc.description.referencesHossain, M.; Das, U.; Dimmock, J. Recent advances in α,β-unsaturated carbonyl compounds as mitochondrial toxins. Eur. J. Med. Chem. 2019, 183, 111687.pl
dc.description.referencesLao, C.D.; Ruffin, M.T., IV; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med. 2006, 6, 10.pl
dc.description.referencesAk, T.; Gülçin, I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 2008, 174, 27–37.pl
dc.description.referencesSandur, S.K.; Pandey, M.K.; Sung, B.; Ahn, K.S.; Murakami, A.; Sethi, G.; Limtrakul, P.; Badmaev, V.; Aggarwal, B.B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis. 2007, 28, 1765–1773.pl
dc.description.referencesSarwar, S.; Netzel, G.; Netzel, M.E.; Mereddy, R.; Phan, A.D.T.; Hong, H.T.; Cozzolino, D.; Sultanbawa, Y. Impact of CurcuminMediated Photosensitization on Fungal Growth, Physicochemical Properties and Nutritional Composition in Australian Grown Strawberry. Food Anal. Methods. 2020, 14, 465–472.pl
dc.description.referencesTomeh, M.A.; Hadianamrei, R.; Zhao, X. A Review of Curcumin and Its Derivatives as Anticancer Agents. Int. J. Mol. Sci. 2019, 20, 1033.pl
dc.description.referencesBairwa, K.; Grover, J.; Kania, M.; Jachak, S.M. Recent developments in chemistry and biology of curcumin analogues. RSC Adv. 2014, 4, 13946–13978.pl
dc.description.referencesRaduly, F.M.; Raditoiu, V.; Raditoiu, A.; Purcar, V. Curcumin: Modern Applications for a Versatile Additive. Coatings. 2021, 11, 519.pl
dc.description.referencesWang, Y.J.; Pan, M.H.; Cheng, A.L.; Lin, L.I.; Ho, Y.S.; Hsieh, C.Y.; Lin, J.K. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal. 1997, 15, 1867–1876.pl
dc.description.referencesEsatbeyoglu, T.; Huebbe, P.; Ernst, I.M.A.; Chin, D.; Wagner, A.E.; Rimbach, G. Curcumin—From Molecule to Biological Function. Angew. Chem. Int. Ed. 2012, 51, 5308–5332.pl
dc.description.referencesHewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its Effects on Human Health. Foods 2017, 6, 92.pl
dc.description.referencesSanidad, K.Z.; Sukamtoh, E.; Xiao, H.; McClements, D.J.; Zhang, G. Curcumin: Recent Advances in the Development of Strategies to Improve Oral Bioavailability. Annu Rev. Food Sci Technol. 2019, 10, 597–617.pl
dc.description.referencesHuber, I.; Zupkó, I.; Kovács, I.J.; Minorics, R.; Gulyás-Fekete, G.; Maász, G.; Perjési, P. Synthesis and antiproliferative activity of cyclic arylidene ketones: A direct comparison of monobenzylidene and dibenzylidene derivatives. Monatshefte Chemie—Chem. Mon. 2015, 146, 973–981.pl
dc.description.referencesHossain, M.; Das, S.; Das, U.; Doroudi, A.; Zhu, J.; Dimmock, J.R. Novel hybrid molecules of 3,5-bis(benzylidene)-4-piperidones and dichloroacetic acid which demonstrate potent tumour-selective cytotoxicity. Bioorg. Med. Chem. Lett. 2020, 30, 126878.pl
dc.description.referencesPati, H.N.; Das, U.; Das, S.; Bandy, B.; De Clercq, E.; Balzarini, J.; Kawase, M.; Sakagami, H.; Quail, J.W.; Stables, J.P.; et al. The cytotoxic properties and preferential toxicity to tumour cells displayed by some 2,4-bis(benzylidene)-8-methyl-8-azabicyclo [3.2.1] octan-3-ones and 3,5-bis(benzylidene)-1-methyl-4-piperidones. Eur. J. Med. Chem. 2009, 44, 54–62.pl
dc.description.referencesNagaraju, G.P.; Benton, L.; Bethi, S.R.; Shoji, M.; El-Rayes, B.F. Curcumin analogs: Their roles in pancreatic cancer growth and metastasis. Int. J. Cancer 2019, 145, 10–19.pl
dc.description.referencesMoreira, J.; Saraiva, L.; Pinto, M.M.; Cidade, H. Diarylpentanoids with antitumor activity: A critical review of structure-activity relationship studies. Eur. J. Med. Chem. 2020, 192, 112177.pl
dc.description.referencesLin, L.; Shi, Q.; Su, C.Y.; Shih, C.C.Y.; Lee, K.H. Antitumor agents 247. New 4-ethoxycarbonylethyl curcumin analogs as potential antiandrogenic agents. Bioorg. Med. Chem. 2006, 14, 2527–2534.pl
dc.description.referencesAlonso, A.; Sasin, J.; Bottini, N.; Friedberg, I.; Friedberg, I.; Osterman, A.; Godzik, A.; Hunter, T.; Dixon, J.; Mustelin, T. Protein tyrosine phosphatases in the human genome. Cell 2004, 117, 699–711.pl
dc.description.referencesDen Hertog, J.; Groen, A.; Van Der Wijk, T. Redox regulation of protein-tyrosine phosphatases. Arch. Biochem. Biophys. 2005, 434, 11–15.pl
dc.description.referencesHendriks, W.J.A.J.; Elson, A.; Harroch, S.; Stoker, A.W. Protein tyrosine phosphatases: Functional inferences from mouse models and human diseases. FEBS J. 2008, 275, 816–830.pl
dc.description.referencesOstman, A.; Hellberg, C.; Böhmer, F.D. Protein-tyrosine phosphatases and cancer. Nat. Rev. Cancer 2006, 6, 307–320.pl
dc.description.referencesAceto, N.; Bentires-Alj, M. Targeting protein-tyrosine phosphatases in breast cancer. Oncotarget 2012, 3, 514–515.pl
dc.description.referencesWolosewicz, K.; Podgorska, K.; Rutkowska, E.; Lazny, R. Synthesis of Dicarbonyl Curcumin Analogues Containing the Tropane Scaffold. Eur. J. Org. Chem. 2019, 2019, 4662–4674.pl
dc.description.referencesYoussef, K.M.; El-Sherbeny, M.A.; El-Shafie, F.S.; Farag, H.A.; Al-Deeb, O.A.; Awadalla, S.A.A. Synthesis of Curcumin Analogues as Potential Antioxidant, Cancer Chemopreventive Agents. Arch. Pharm. (Weinheim) 2004, 337, 42–54.pl
dc.description.referencesGeorge, H.; Roth, H.J. Photoisomerisierung und Cyclo-1,2-Addition α, β-ungesättigter Cyclanone. Tetrahedron Lett. 1971, 12, 4057–4060.pl
dc.description.referencesPiotrowska-Kirschling, A.; Drzezd˙ zon, J.; Kloska, A.; Wyrzykowski, D.; Chmurzyński, L.; Jacewicz, D. Antioxidant and Cytoprotective Activity of Oxydiacetate Complexes of Cobalt(II) and Nickel(II) with 1,10-Phenantroline and 2,20 -Bipyridine. Biol. Trace Elem. Res. 2018, 185, 244–251.pl
dc.description.referencesAbu, N.; Akhtar, M.N.; Ho, W.Y.; Yeap, S.K.; Alitheen, N.B. 3-bromo-1-hydroxy-9,10-anthraquinone (BHAQ) inhibits growth and migration of the human breast cancer cell lines MCF-7 and MDA-MB231. Molecules 2013, 18, 10367–10377.pl
dc.description.referencesPessina, A.; Raimondi, A.; Cerri, A.; Piccirillo, M.; Neri, M.G.; Croera, C.; Foti, P.; Berti, E. High sensitivity of human epidermal keratinocytes (HaCaT) to topoisomerase inhibitors. Cell Prolif. 2001, 34, 243–252.pl
dc.description.referencesBadmus, J.A.; Oyemomi, S.A.; Adedosu, O.T.; Yekeen, T.A.; Azeez, M.A.; Adebayo, E.A.; Lateef, A.; Badeggi, U.M.; Botha, S.; Hussein, A.A.; et al. Photo-assisted bio-fabrication of silver nanoparticles using Annona muricata leaf extract: Exploring the antioxidant, anti-diabetic, antimicrobial, and cytotoxic activities. Heliyon 2020, 6, E05413.pl
dc.description.referencesPolat, E.; Kang, K. Natural Photosensitizers in Antimicrobial Photodynamic Therapy. Biomedicines 2021, 9, 584.pl
dc.description.referencesGhorbani, J.; Rahban, D.; Aghamiri, S.; Teymouri, A.; Bahador, A. Photosensitizers in antibacterial photodynamic therapy: An overview. Laser Ther. 2018, 27, 293.pl
dc.description.referencesDamyeh, M.S.; Mereddy, R.; Netzel, M.E.; Sultanbawa, Y. An insight into curcumin-based photosensitization as a promising and green food preservation technology. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1727–1759.pl
dc.description.referencesKostrzewa, T.; Przychodzen, P.; Gorska-Ponikowska, M.; Kuban-Jankowska, A. Curcumin and Cinnamaldehyde as PTP1B Inhibitors with Antidiabetic and Anticancer Potential. Anticancer Res. 2019, 39, 745–749.pl
dc.description.referencesTonks, N.K.; Muthuswamy, S.K. A Brake Becomes an Accelerator: PTP1B—A New Therapeutic Target for Breast Cancer. Cancer Cell 2007, 11, 214–216.pl
dc.description.referencesBarr, A.J. Protein tyrosine phosphatases as drug targets: Strategies and challenges of inhibitor development. Future Med. Chem. 2010, 2, 1563–1576.pl
dc.description.referencesJulien, S.G.; Dubé, N.; Read, M.; Penney, J.; Paquet, M.; Han, Y.; Kennedy, B.P.; Muller, W.J.; Tremblay, M.L. Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nat. Genet. 2007, 39, 338–346.pl
dc.description.referencesLiao, S.; Li, J.; Yu, L.; Sun, S. Protein tyrosine phosphatase 1B expression contributes to the development of breast cancer. J. Zhejiang Univ. Sci. B 2017, 18, 334.pl
dc.description.referencesLiu, X.; Chen, Q.; Hu, X.-G.; Zhang, X.-C.; Fu, T.-W.; Liu, Q.; Liang, Y.; Zhao, X.-L.; Zhang, X.; Ping, Y.-F.; et al. PTP1B promotes aggressiveness of breast cancer cells by regulating PTEN but not EMT. Tumour Biol. 2016, 37, 13479–13487.pl
dc.description.referencesTonks, N.K. Protein tyrosine phosphatases: From genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 2006, 7, 833–846.pl
dc.description.referencesParsons, S.J.; Parsons, J.T. Src family kinases, key regulators of signal transduction. Oncogene 2004, 23, 7906–7909.pl
dc.description.referencesSummy, J.; Gallick, G. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev. 2003, 22, 337–358.pl
dc.description.referencesBiscardi, J.S.; Ishizawar, R.C.; Silva, C.M.; Parsons, S.J. Tyrosine kinase signalling in breast cancer: Epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res. 2000, 2, 203.pl
dc.description.referencesLai, Y.-H.; Chen, M.-H.; Lin, S.-Y.; Lin, S.-Y.; Wong, Y.-H.; Yu, S.-L.; Chen, H.-W.; Yang, C.-H.; Chang, G.-C.; Chen, J.J.W. Rhodomycin A, a novel Src-targeted compound, can suppress lung cancer cell progression via modulating Src-related pathways. Oncotarget 2015, 6, 26252–26265.pl
dc.description.referencesBjorge, J.; Jakymiw, A.; Fujita, D. Selected glimpses into the activation and function of Src kinase. Oncogene 2000, 19, 5620–5635.pl
dc.description.referencesChen, K.; Lu, P.; Beeraka, N.; Sukocheva, O.; Madhunapantula, S.; Liu, J.; Sinelnikov, M.; Nikolenko, V.; Bulygin, K.; Mikhaleva, L.; et al. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers. Semin. Cancer Biol. 2020.pl
dc.description.referencesMeng, T.; Buckley, D.; Galic, S.; Tiganis, T. Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. J. Biol. 2004, 279, 37716–37725.pl
dc.description.referencesJones, D. Radical-free biology of oxidative stress. Am. J. Physiol. Physiol. 2008, 295, C849–C868.pl
dc.description.referencesCaselli, A.; Marzocchini, R.; Camici, G.; Manao, G. The inactivation mechanism of low molecular weight phosphotyrosine-protein phosphatase by H₂O₂. J. Biol. 1998, 273, 32554–32560.pl
dc.description.referencesKarisch, R.; Fernandez, M.; Taylor, P.; Virtanen, C.; St-Germain, J.R.; Jin, L.L.; Harris, I.S.; Mori, J.; Mak, T.W.; Senis, Y.A.; et al. Global proteomic assessment of the classical protein-tyrosine phosphatome and “Redoxome”. Cell 2011, 146, 826–840.pl
dc.description.referencesIreson, C.; Orr, S.; Jones, D.J.; Verschoyle, R.; Lim, C.K.; Luo, J.L.; Howells, L.; Plummer, S.; Jukes, R.; Williams, M.; et al. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res. 2001, 61, 1058–1064.pl
dc.description.referencesNelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The Essential MedicinalChemistry of Curcumin: Miniperspective. J. Med. Chem. 2017, 60, 1620.pl
dc.description.referencesDikusar, E.A.; Kozlov, N.G. Methyl-and ethyl carbonates derived from vanillin and vanillal in the synthesis of nitrogen-containing compounds. Russ. J. Gen. Chem. 2007, 77, 905–910.pl
dc.description.referencesGu, X.; Wang, X.; Wang, F.; Sun, H.; Liu, J.; Xie, Y.; Xiang, M. Pyrrolidine-Mediated Direct Preparation of (E)-Monoarylidene Derivatives of Homo- and Heterocyclic Ketones with Various Aldehydes. Molecules 2014, 19, 1976–1989.pl
dc.description.referencesBradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254.pl
dc.description.referencesImageJ; version 1.8.0_172; Software for Image Processing and Analysis in Java; U. S. National Institutes of Health: Bethesda, MD, USA, 2018.pl
dc.description.referencesSchrödinger Release 2018-4: LigPrep; Schrödinger, LLC: New York, NY, USA, 2018.pl
dc.description.referencesSchrödinger Release 2018-4: Protein Preparation Wizard; Epik, Schrödinger, LLC: New York, NY, USA; Impact, Schrödinger, LLC: New York, NY, USA; Prime, Schrödinger, LLC: New York, NY, USA, 2018.pl
dc.description.referencesMadhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Mol. Des. 2013, 27, 221–234.pl
dc.description.referencesSherman, W.; Day, T.; Jacobson, M.P.; Friesner, R.A.; Ramy, F. Novel Procedure for Modeling Ligand/Receptor Induced Fit Effects. J. Med. Chem. 2005, 49, 534–553.pl
dc.description.referencesHalgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. J. Med. Chem. 2004, 47, 1750–1759.pl
dc.description.referencesSchrödinger Release 2018-4: Glide; Schrödinger, LLC: New York, NY, USA, 2018.pl
dc.description.volume22pl
dc.description.issue19pl
dc.description.firstpage1pl
dc.description.lastpage22pl
dc.identifier.citation2International Journal of Molecular Sciencespl
dc.identifier.orcid0000-0002-6081-2049-
dc.identifier.orcid0000-0001-6164-6428-
dc.identifier.orcid0000-0002-0433-8426-
dc.identifier.orcid0000-0002-9964-3027-
dc.identifier.orcid0000-0002-4340-0085-
dc.identifier.orcid0000-0002-6266-5193-
dc.identifier.orcid0000-0002-7366-8429-
dc.identifier.orcid0000-0001-8402-1121-
dc.identifier.orcid0000-0003-2358-0960-
dc.identifier.orcid0000-0003-3371-5013-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
T_Kostrzewa_K_Wolosewicz_M_Jamrozik_R_Lazny_at_al_Curcumin_and_Its_New_Derivatives.pdf3,35 MBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons