REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/16614
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorŁaźny, Ryszard-
dc.contributor.authorRatkiewicz, Artur-
dc.contributor.authorBrzeziński, Krzysztof-
dc.contributor.authorNodzewska, Aneta-
dc.contributor.authorSidorowicz, Katarzyna-
dc.date.accessioned2024-06-05T08:22:13Z-
dc.date.available2024-06-05T08:22:13Z-
dc.date.issued2016-
dc.identifier.citationJournal of Chemistry, vol. 2016, 2016, pp. 1–15pl
dc.identifier.urihttp://hdl.handle.net/11320/16614-
dc.description.abstractThe exo,anti/exo,syn-diastereoselectivity of water promoted direct aldol reactions of tropinone and granatanone (pseudopelletierine) is strongly dependent on the amount of water added and aromatic aldehyde used. DFT methods were applied to calculate the free energies of tropinone and granatanone enols, transition states, and isomeric aldol products. A theoretical model was verified by comparison of results from several DFT methods and functionals with experiments. The 6-31g(d)/CPCM method proved most suited to the problem, although all methods tested predicted similar trends. Explicit inclusion of a water molecule bonded to the amino ketones resulted in increased stability of the enol forms.The dependence of the anti/syn-diastereoselectivity on the amount of water usedmay be rationalized on the basis of change in the polarity of the reaction medium. The predicted stabilities of competing products agreed with experimental results supporting the notion of thermodynamic control.The isomeric products distributions for the aldol reaction of several aromatic aldehydes in solventless (neat) conditions were accurately calculated fromfree energies of the aldol addition step in the gas phase using B3LYP/6-31g(d) method and in aqueous conditions using the CPCM-B3LYP/6-31g(d) model. Our methodology can be useful for predicting the outcome of this type of aldol reactions.pl
dc.description.sponsorshipThe work was supported by the University of Bialystok (BST-125) and the National Science Center, Poland (Grant no. 2014/13/D/ST5/02871 and Grant no. 2014/15/B/ST5/04695). The authors thank the Computational Centre of the University of Warsaw (ICM, Grant G33-03) and the Computer Centre of University of Bialystok (UCO, Grant GO-008) for providing access to the supercomputer resources and the GAUSSIAN 09 program. The X-ray diffractometer was funded by EFRD as part of the Operational Programme Development of Eastern Poland 2007–2013 (Project no. POPW.01.03.00-20-034/09-00).pl
dc.language.isoenpl
dc.publisherHindawi Publishing Corporationpl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleAn Investigation of the Enolization and Isomeric Products Distribution in the Water Promoted Aldol Reaction of Tropinone and Granatanonepl
dc.typeArticlepl
dc.rights.holderCopyright © 2016 Ryszard Lazny et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.pl
dc.identifier.doi10.1155/2016/4674901-
dc.description.EmailArtur Ratkiewicz: artrat@uwb.edu.plpl
dc.description.AffiliationRyszard Łaźny - Institute of Chemistry, University of Bialystok, ul. Ciolkowskiego 1K, 15-245 Bialystok, Polandpl
dc.description.AffiliationArtur Ratkiewicz - Institute of Chemistry, University of Bialystok, ul. Ciolkowskiego 1K, 15-245 Bialystok, Polandpl
dc.description.AffiliationKrzysztof Brzeziński - Institute of Chemistry, University of Bialystok, ul. Ciolkowskiego 1K, 15-245 Bialystok, Polandpl
dc.description.AffiliationAneta Nodzewska - Institute of Chemistry, University of Bialystok, ul. Ciolkowskiego 1K, 15-245 Bialystok, Polandpl
dc.description.AffiliationKatarzyna Sidorowicz - Institute of Chemistry, University of Bialystok, ul. Ciolkowskiego 1K, 15-245 Bialystok, Polandpl
dc.description.referencesB. M. Trost and C. S. Brindle, “The direct catalytic asymmetric aldol reaction,” Chemical Society Reviews, vol. 39, no. 5, pp. 1600–1632, 2010.pl
dc.description.referencesB. List, R. A. Lerner, and C. F. Barbas III, “Proline-catalyzed direct asymmetric aldol reactions,” Journal of the American Chemical Society, vol. 122, no. 10, pp. 2395–2396, 2000.pl
dc.description.referencesS. G. Zlotin, A. S. Kucherenko, and I. P. Beletskaya, “Organocatalysis of asymmetric aldol reaction. Catalysts and reagents,” Russian Chemical Reviews, vol. 78, no. 8, pp. 737–784, 2009.pl
dc.description.referencesS.Mukherjee, J.W. Yang, S.Hoffmann, andB. List, “Asymmetric enamine catalysis,” Chemical Reviews, vol. 107, no. 12, pp. 5471–5569, 2007.pl
dc.description.referencesA. Heine, G. DeSantis, J. G. Luz, M. Mitchell, C.-H. Wong, and I. A.Witson, “Observation of covalent intermediates in an enzyme mechanism at atomic resolution,” Science, vol. 294, no. 5541, pp. 369–374, 2001.pl
dc.description.referencesM.Markert,M.Mulzer, B. Schetter, and R.Mahrwald, “Aminecatalyzed direct aldol addition,” Journal of the American Chemical Society, vol. 129, no. 23, pp. 7258–7259, 2007.pl
dc.description.referencesJ. Paradowska, M. Rogozi´nska, and J. Mlynarski, “Direct asymmetric aldol reaction of hydroxyacetone promoted by chiral tertiary amines,” Tetrahedron Letters, vol. 50, no. 14, pp. 1639–1641, 2009.pl
dc.description.referencesC. D. Gutsche, R. S. Buriks, K. Nowotny, and H. Grassner, “Tertiary amine catalysis of the aldol condensation,” Journal of the American Chemical Society, vol. 84, no. 19, pp. 3775–3777, 1962.pl
dc.description.referencesC. D. Gutsche, D. Redmore, R. S. Buriks, K. Nowotny, H. Grassner, and C.W. Armbruster, “Base-catalyzed triose condensations,” Journal of the American Chemical Society, vol. 89, no. 5, pp. 1235–1245, 1967.pl
dc.description.referencesP. M. Pihko, K. M. Laurikainen, A. Usano, A. I. Nyberg, and J. A. Kaavi, “Effect of additives on the proline-catalyzed ketonealdehyde aldol reactions,” Tetrahedron, vol. 62, no. 2-3, pp. 317–328, 2006.pl
dc.description.referencesM. S. Abaee, M. M. Mojtahedi, G. F. Pasha et al., “Switching the reactivity of dihydrothiopyran-4-one with aldehydes by aqueous organocatalysis: Baylis-Hillman, aldol, or aldol condensation reactions,” Organic Letters, vol. 13, no. 19, pp. 5282–5285, 2011.pl
dc.description.referencesP. H.-Y. Cheong, C. Y. Legault, J. M. Um, N. Çelebi-Ölçüm, and K. N. Houk, “Quantum mechanical investigations of organocatalysis: mechanisms, reactivities, and selectivities,”Chemical Reviews, vol. 111, no. 8, pp. 5042–5137, 2011.pl
dc.description.referencesR. Lazny, M. Sienkiewicz, T. Olenski, Z. Urbanczyk-Lipkowska, and P. Kalicki, “Approaches to the enantioselective synthesis of ferrugine and its analogues,” Tetrahedron, vol. 68, no. 39, pp. 8236–8244, 2012.pl
dc.description.referencesM. Sienkiewicz, U. Wilkaniec, and R. Lazny, “Enantioselective route to ferrugine and its methyl analogue via aldol deoxygenation,” Tetrahedron Letters, vol. 50, no. 51, pp. 7196–7198, 2009.pl
dc.description.referencesJ. C. Lee, K. Lee, and J. K. Cha, “Enantioselective synthesis of unnatural (S)-(+)-cocaine,” Journal of Organic Chemistry, vol. 65, no. 15, pp. 4773–4775, 2000.pl
dc.description.referencesG. P. Pollini, S. Benetti, C. De Risi, and V. Zanirato, “Synthetic approaches to enantiomerically pure 8-azabicyclo[3.2.1]octane derivatives,” Chemical Reviews, vol. 106, no. 6, pp. 2434–2454, 2006.pl
dc.description.referencesR. Lazny, A. Nodzewska, and I. Tomczuk, “Spontaneous and diastereoselective aldol reactions of cyclic 𝛽-amino ketones in the presence of water,” Tetrahedron Letters, vol. 52, no. 43, pp. 5680–5683, 2011.pl
dc.description.referencesR. Lazny, K.Wolosewicz, P. Zielinska, Z. Urbanczyk-Lipkowska, and P. Kalicki, “Diastereo- and enantioselective aldol reaction of granatanone (pseudopelletierine),” Tetrahedron, vol. 67, no. 48, pp. 9433–9439, 2011.pl
dc.description.referencesM. Majewski and R. Lazny, “Synthesis of tropane alkaloids via enantioselective deprotonation of tropinone,” Journal of Organic Chemistry, vol. 60, no. 18, pp. 5825–5830, 1995.pl
dc.description.referencesR. Lazny and A. Nodzewska, “Synthesis of polymeric supports with spacer-modified triazene linkers: aldol and Grignard reactions of immobilized nortropinone,” Tetrahedron Letters, vol. 44, no. 12, pp. 2441–2444, 2003.pl
dc.description.referencesR. Lazny, A. Nodzewska, and M. Sienkiewicz, “Studies on aldol reactions of nortropinone derivatives in solution and on solid phase,” Letters inOrganic Chemistry, vol. 7, no. 1,pp. 21–26, 2010.pl
dc.description.referencesR. Lazny, A. Nodzewska, K. Sidorowicz, and P. Kalicki, “Determination of the relative configuration of tropinone and granatanone aldols by using TBDMS ethers,” Beilstein Journal of Organic Chemistry, vol. 8, pp. 1877–1883, 2012.pl
dc.description.referencesA. Nodzewska, A. Bokina, K. Romanowska, and R. Lazny, “Environmentally benign diastereoselective synthesis of granatane and tropane aldol derivatives,” RSC Advances, vol. 4, no. 56, pp. 29668–29681, 2014.pl
dc.description.referencesR. Lazny, A. Ratkiewicz, A.Nodzewska, and J.Wysocka, “ADFT study of the origins of the stereoselectivity in the aldol reaction of bicyclic amino ketones in the presence of water,” Tetrahedron Letters, vol. 53, no. 44, pp. 5871–5874, 2012.pl
dc.description.referencesO.V. Dolomanov, L. J. Bourhis, R. J. Gildea, J.A.K.Howard, and H. Puschmann, “OLEX2: a complete structure solution, refinement and analysis program,” Journal of Applied Crystallography, vol. 42, no. 2, pp. 339–341, 2009.pl
dc.description.referencesX. Zhang and K. N. Houk, “Acid/base catalysis by pure water: the aldol reaction,” Journal of Organic Chemistry, vol. 70, no. 24, pp. 9712–9716, 2005.pl
dc.description.referencesE. Iglesias, “Tautomerization of 2-acetylcyclohexanone. 1. Characterization of keto-enol/enolate equilibria and reaction rates in water,” Journal of Organic Chemistry, vol. 68, no. 7, pp. 2680–2688, 2003.pl
dc.description.referencesG. Alagona, C. Ghio, and P. I.Nagy, “Thecatalytic effect of water on the keto-enol tautomerism. Pyruvate and acetylacetone: a computational challenge,” Physical Chemistry Chemical Physics, vol. 12, no. 35, pp. 10173–10188, 2010.pl
dc.description.referencesS. Yamabe, N. Tsuchida, and K. Miyajima, “Reaction paths of keto-enol tautomerization of 𝛽-diketones,” The Journal of Physical Chemistry A, vol. 108, no. 14, pp. 2750–2757, 2004.pl
dc.description.referencesR. J. Cantlin, J. Drake, and R. W. Nagorski, “Ring strain and its effect on the rate of the general-base catalyzed enolization of cyclobutanone,” Organic Letters, vol. 4, no. 14, pp. 2433–2436, 2002.pl
dc.description.referencesE. D. Raczyńska, W. Kosińska, B. Ośmiałowski, and R. Gawinecki, “Tautomeric equilibria in relation to Pi-electron delocalization,” Chemical Reviews, vol. 105, no. 10, pp. 3561–3612, 2005.pl
dc.description.referencesJ. K. Coward and T. C. Bruice, “Intramolecular amine-catalyzed ketone enolization. A search for concerted intramolecular general-base, general-acid catalysis,” Journal of the American Chemical Society, vol. 91, no. 19, pp. 5339–5345, 1969.pl
dc.description.referencesS. O. C. Mundle, G. W. Howe, and R. Kluger, “Origins of steric effects in general-base-catalyzed enolization: solvation and electrostatic attraction,” Journal of the American Chemical Society, vol. 134, no. 2, pp. 1066–1070, 2012.pl
dc.description.referencesM. Majewski, R. Lazny, and A. Ulaczyk, “Enantioselective ring opening of tropinone. a new entry into tropane alkaloids,” Canadian Journal of Chemistry, vol. 75, no. 6, pp. 754–761, 1997.pl
dc.description.referencesP. Écija, M. Vallejo-López, L. Evangelisti et al., “O-H–N and C-H–O hydrogen bonds control hydration of pivotal tropane alkaloids: tropinone—H2O complex,” ChemPhysChem, vol. 15, no. 5, pp. 918–923, 2014.pl
dc.description.referencesR. Lazny, A. Ratkiewicz, A. Nodzewska, A. Wynimko, and L. Siergiejczyk, “Determination of the N-methyl stereochemistry in tropane and granatane derivatives in solution: a computational and NMR spectroscopic study,” Tetrahedron, vol. 68, no. 31, pp. 6158–6163, 2012.pl
dc.description.referencesK. Sidorowicz, A. Ratkiewicz, A. Nodzewska, and R. Lazny, “Determination of the N-invertomer stereochemistry in N-substituted nortropanones and norgranatanones using computational and NMR methods,” Comptes Rendus Chimie, vol. 18, no. 6, pp. 693–704, 2015.pl
dc.description.referencesK. Sidorowicz, R. Lazny, A. Nodzewska et al., “Isomerisation and configurational assignment of 2-alkyltropane and 2-alkylgranatane derived hydrazones,” Tetrahedron, vol. 71, no. 32, pp. 5148–5158, 2015.pl
dc.description.referencesR. J. Staples, Y. Qi, and Z. Kristallogr, “Crystal structure of 8-methyl-8-azabicyclo(3,2,1)octan-3-one, C8H13NO,” New Crystal Structures, vol. 222, pp. 225–226, 2007.pl
dc.description.referencesD. Cremer and J. A. Pople, “General definition of ring puckering coordinates,” Journal of the American Chemical Society, vol. 97, no. 6, pp. 1354–1358, 1975.pl
dc.description.referencesA. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Physical Review A, vol. 38, no. 6, pp. 3098–3100, 1988.pl
dc.description.referencesR. Ditchfield, W. J. Hehre, and J. A. Pople, “Self‐consistent molecular‐orbital methods. IX. An extended gaussian‐type basis for molecular‐orbital studies of organic molecules,” The Journal of Chemical Physics, vol. 54, no. 2, pp. 724–728, 1971.pl
dc.description.referencesA. D. McLean and G. S. Chandler, “Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18,” The Journal of Chemical Physics, vol. 72, no. 10, pp. 5639–5648, 1980.pl
dc.description.referencesA. D. Becke, “A new mixing of Hartree–Fock and local density-functional theories,” The Journal of Chemical Physics, vol. 98, no. 2, pp. 1372–1377, 1993.pl
dc.description.referencesT. H. Dunning, “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen,” The Journal of Chemical Physics, vol. 90, no. 2, pp. 1007–1023, 1989.pl
dc.description.referencesY. Zhao and D. G. Truhlar, “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals,” Theoretical Chemistry Accounts, vol. 120, no. 1, pp. 215–241, 2008.pl
dc.description.referencesW. M. C. Sameera and D. A. Pantazis, “A hierarchy of methods for the energetically accurate modeling of isomerism in monosaccharides,” Journal of Chemical Theory and Computation, vol. 8, no. 8, pp. 2630–2645, 2012.pl
dc.description.referencesC. Allemann, J. M. Um, and K. N. Houk, “Computational investigations of the stereoselectivities of proline-related catalysts for aldol reactions,” Journal of Molecular Catalysis A: Chemical, vol. 324, no. 1-2, pp. 31–38, 2010.pl
dc.description.referencesJ. P. Guthrie and P. A. Cullimore, “The enol content of simple carbonyl compounds: a thermochemical approach,” Canadian Journal of Chemistry, vol. 57, no. 2, pp. 240–248, 1979.pl
dc.description.referencesY. Chiang, A. J. Kresge, Y. S. Tang, and J. Wirz, “The pKa and keto-enol equilibrium constant of acetone in aqueous solution,” Journal of the American Chemical Society, vol. 106, no. 2, pp. 460–462, 1984.pl
dc.description.referencesK. Brzezinski, R. Lazny, M. Sienkiewicz, S. Wojtulewski, and Z. Dauter, “(2R)-8-Benzyl-2-[(S)-hydroxy(phenyl)-methyl]-8-azabicyclo[3.2.1]octan-3-one,” Acta Crystallographica Section E: Structure Reports Online, vol. 68, no. 1, pp. o149–o150, 2012.pl
dc.description.referencesR. Lazny, K. Wolosewicz, Z. Dauter, and K. Brzezinski, “(1RS,2SR,5SR)-9-Benzyl-2-[(1RS)-1-hy­droxy­benz­yl]-9-aza­bicyclo­[3.3.1]nonan-3-one from synchrotron data,” Acta Crystallographica, vol. E68, part 5, Article ID o1367, 2012.pl
dc.description.referencesK. Brzezinski, R. Lazny, A. Nodzewska, and K. Sidorowicz, “Relative configuration, absolute configuration and absolute structure of three isomeric 8-benzyl-2-[(4-bromophenyl)(hydroxy)methyl]-8-azabicyclo[3.2.1] octan-3-ones,” Acta Crystallographica Section C: Crystal Structure Communications, vol. 69, no. 3, pp. 303–306, 2013.pl
dc.description.referencesG. Zheng, L. P. Dwoskin, and P. A. Crooks, “The preparation of 2‐arylmethylidene‐8‐methyl‐8‐azabicyclo[3.2.1]octan‐3‐ones,” Synthetic Communications, vol. 34, no. 11, pp. 1931–1942, 2004.pl
dc.description.referencesD. E. Ward, M. Sales, and P. K. Sasmal, “Syn-anti isomerization of aldols by enolization,” Organic Letters, vol. 3, no. 23, pp. 3671–3673, 2001.pl
dc.description.referencesD. E. Ward, M. Sales, and P. K. Sasmal, “Syn-anti isomerization of aldols by enolization,” Journal of Organic Chemistry, vol. 69, no. 14, pp. 4808–4815, 2004.pl
dc.description.referencesCrysAlisPro, Agilent Technologies, Yarnton, UK, 2011.pl
dc.description.referencesG. M. Sheldrick, “A short history of SHELX,” Acta Crystallographica A, vol. 64, pp. 112–122, 2008.pl
dc.description.referencesA. L. Spek, “Structure validation in chemical crystallography,” Acta Crystallographica Section D Biological Crystallography, vol. 65, no. 2, pp. 148–155, 2009.pl
dc.description.referencesM. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 09, Revision A.1, Gaussian Inc, Wallingford, Conn, USA, 2009.pl
dc.description.referencesV. Barone and M. Cossi, “Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model,” Journal of Physical Chemistry A, vol. 102, no. 11, pp. 1995–2001, 1998.pl
dc.description.referencesV. Barone, M. Cossi, and J. Tomasi, “Geometry optimization of molecular structures in solution by the polarizable continuum model,” Journal of Computational Chemistry, vol. 19, no. 4, pp. 404–417, 1998.pl
dc.identifier.eissn2090-9071-
dc.description.volume2016pl
dc.description.firstpage1pl
dc.description.lastpage15pl
dc.identifier.citation2Journal of Chemistrypl
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons