REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/16613
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorZahn, Michael-
dc.contributor.authorKonig, Gerhard-
dc.contributor.authorCuong Pham, Huy Viet-
dc.contributor.authorSeroka, Barbara-
dc.contributor.authorŁaźny, Ryszard-
dc.contributor.authorYang, Guangli-
dc.contributor.authorOuerfelli, Ouathek-
dc.contributor.authorŁotowski, Zenon-
dc.contributor.authorRohwerder, Thore-
dc.date.accessioned2024-06-05T07:44:50Z-
dc.date.available2024-06-05T07:44:50Z-
dc.date.issued2022-
dc.identifier.citationJournal of Biological Chemistry, Volume 298, Issue 1 (2022), p. 1-12pl
dc.identifier.issn0021-9258-
dc.identifier.urihttp://hdl.handle.net/11320/16613-
dc.description.abstractActinobacterial 2-hydroxyacyl-CoA lyase reversibly catalyzes the thiamine diphosphate-dependent cleavage of 2-hydroxyisobutyryl-CoA to formyl-CoA and acetone. This enzyme has great potential for use in synthetic one-carbon assimilation pathways for sustainable production of chemicals, but lacks details of substrate binding and reaction mechanism for biochemical reengineering. We determined crystal structures of the tetrameric enzyme in the closed conformation with bound substrate, covalent postcleavage intermediate, and products, shedding light on active site architecture and substrate interactions. Together with molecular dynamics simulations of the covalent precleavage complex, the complete catalytic cycle is structurally portrayed, revealing a proton transfer from the substrate acyl Cβ hydroxyl to residue E493 that returns it subsequently to the postcleavage Cα-carbanion intermediate. Kinetic parameters obtained for mutants E493A, E493Q, and E493K confirm the catalytic role of E493 in the WT enzyme. However, the 10- and 50-fold reduction in lyase activity in the E493A and E493Q mutants, respectively, compared with WT suggests that water molecules may contribute to proton transfer. The putative catalytic glutamate is located on a short α-helix close to the active site. This structural feature appears to be conserved in related lyases, such as human 2-hydroxyacylCoA lyase 2. Interestingly, a unique feature of the actinobacterial 2-hydroxyacyl-CoA lyase is a large C-terminal lid domain that, together with active site residues L127 and I492, restricts substrate size to ≤C5 2-hydroxyacyl residues. These details about the catalytic mechanism and determinants of substrate specificity pave the ground for designing tailored catalysts for acyloin condensations for one-carbon and shortchain substrates in biotechnological applications.pl
dc.language.isoenpl
dc.publisherElsevier Inc on behalf of American Society for Biochemistry and Molecular Biologypl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleMechanistic details of the actinobacterial lyase-catalyzed degradation reaction of 2-hydroxyisobutyryl-CoApl
dc.typeArticlepl
dc.rights.holder© 2021 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology. This is an open access article under the CC BY license.pl
dc.identifier.doi10.1016/j.jbc.2021.101522-
dc.description.AffiliationMichael Zahn - Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdompl
dc.description.AffiliationGerhard König - Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdompl
dc.description.AffiliationHuy Viet Cuong Pham - Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germanypl
dc.description.AffiliationBarbara Seroka - Faculty of Chemistry, University of Bialystok, Bialystok, Polandpl
dc.description.AffiliationRyszard Łaźny - Faculty of Chemistry, University of Bialystok, Bialystok, Polandpl
dc.description.AffiliationGuangli Yang - Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USApl
dc.description.AffiliationOuathek Ouerfelli - Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USApl
dc.description.AffiliationZenon Łotowski - Faculty of Chemistry, University of Bialystok, Bialystok, Polandpl
dc.description.AffiliationThore Rohwerder - Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germanypl
dc.description.referencesVogel, C., and Pleiss, J. (2014) The modular structure of ThDP-dependent enzymes. Proteins 82, 2523–2537.pl
dc.description.referencesFoulon, V., Antonenkov, V. D., Croes, K., Waelkens, E., Mannaerts, G. P., Van Veldhoven, P. P., and Casteels, M. (1999) Purification, molecular cloning, and expression of 2-hydroxyphytanoyl-CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carboncarbon bond cleavage during alpha-oxidation of 3-methyl-branched fatty acids. Proc. Natl. Acad. Sci. U. S. A. 96, 10039–10044.pl
dc.description.referencesBaetz, A. L., and Allison, M. J. (1989) Purification and characterization of oxalyl-coenzyme A decarboxylase from Oxalobacter formigenes. J. Bacteriol. 171, 2605–2608pl
dc.description.referencesKitamura, T., Seki, N., and Kihara, A. (2017) Phytosphingosine degradation pathway includes fatty acid α-oxidation reactions in the endoplasmic reticulum. Proc. Natl. Acad. Sci. U. S. A. 114, E2616–E2623.pl
dc.description.referencesChou, A., Clomburg, J. M., Qian, S., and Gonzalez, R. (2019) 2-Hydroxyacyl-CoA lyase catalyzes acyloin condensation for one-carbon bioconversion. Nat. Chem. Biol. 15, 900–906.pl
dc.description.referencesBurgener, S., Cortina, N. S., and Erb, T. J. (2020) Oxalyl-CoA decarboxylase enables nucleophilic one-carbon extension of aldehydes to chiral α-hydroxy acids. Angew. Chem. Int. Ed. Engl. 59, 5526–5530.pl
dc.description.referencesChou, A., Lee, S. H., Zhu, F., Clomburg, J. M., and Gonzalez, R. (2021) An orthogonal metabolic framework for one-carbon utilization. Nat. Metab. 3, 1385–1399.pl
dc.description.referencesBerthold, C. L., Moussatche, P., Richards, N. G., and Lindqvist, Y. (2005) Structural basis for activation of the thiamin diphosphate-dependent enzyme oxalyl-CoA decarboxylase by adenosine diphosphate. J. Biol. Chem. 280, 41645–41654.pl
dc.description.referencesBerthold, C. L., Toyota, C. G., Moussatche, P., Wood, M. D., Leeper, F., Richards, N. G., and Lindqvist, Y. (2007) Crystallographic snapshots of oxalyl-CoA decarboxylase give insights into catalysis by nonoxidative ThDP-dependent decarboxylases. Structure 15, 853–861.pl
dc.description.referencesNattermann, M., Burgener, S., Pfister, P., Chou, A., Schulz, L., Lee, S. H., Paczia, N., Zarzycki, J., Gonzalez, R., and Erb, T. J. (2021) Engineering a highly efficient carboligase for synthetic one-carbon metabolism. ACS Catal. 11, 5396–5404.pl
dc.description.referencesRohwerder, T., Breuer, U., Benndorf, D., Lechner, U., and Müller, R. H. (2006) The alkyl tert-butyl ether intermediate 2-hydroxyisobutyrate is degraded via a novel cobalamin-dependent mutase pathway. Appl. Environ. Microbiol. 72, 4128–4135.pl
dc.description.referencesKurteva-Yaneva, N., Zahn, M., Weichler, M. T., Starke, R., Harms, H., Müller, R. H., Sträter, N., and Rohwerder, T. (2015) Structural basis of the stereospecificity of bacterial B12-dependent 2-hydroxyisobutyryl-CoA mutase. J. Biol. Chem. 290, 9727–9737.pl
dc.description.referencesZahn, M., Kurteva-Yaneva, N., Schuster, J., Krug, U., Georgi, T., Müller, R. H., Rohwerder, T., and Sträter, N. (2019) Structures of 2-hydroxyisobutyric acid-CoA ligase reveal determinants of substrate specificity and describe a multi-conformational catalytic cycle. J. Mol. Biol. 431, 2747–2761.pl
dc.description.referencesElliott, P., Posma, J. M., Chan, Q., Garcia-Perez, I., Wijeyesekera, A., Bictash, M., Ebbels, T. M., Ueshima, H., Zhao, L., van Horn, L., Daviglus, M., Stamler, J., Holmes, E., and Nicholson, J. K. (2015) Urinary metabolic signatures of human adiposity. Sci. Transl. Med. 7, 285ra262.pl
dc.description.referencesLi, X., Xu, Z., Lu, X., Yang, X., Yin, P., Kong, H., Yu, Y., and Xu, G. (2009) Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: Biomarker discovery for diabetes mellitus. Anal. Chim. Acta 633, 257–262.pl
dc.description.referencesDai, L., Peng, C., Montellier, E., Lu, Z., Chen, Y., Ishii, H., Debernardi, A., Buchou, T., Rousseaux, S., Jin, F., Sabari, B. R., Deng, Z., Allis, C. D., Ren, B., Khochbin, S., et al. (2014) Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nat. Chem. Biol. 10, 365–370.pl
dc.description.referencesHuang, J., Luo, Z., Ying, W., Cao, Q., Huang, H., Dong, J., Wu, Q., Zhao, Y., Qian, X., and Dai, J. (2017) 2-Hydroxyisobutyrylation on histone H4K8 is regulated by glucose homeostasis in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 114, 8782–8787.pl
dc.description.referencesHuang, H., Luo, Z., Qi, S., Huang, J., Xu, P., Wang, X., Gao, L., Li, F., Wang, J., Zhao, W., Gu, W., Chen, Z., Dai, L., Dai, J., and Zhao, Y. (2018) Landscape of the regulatory elements for lysine 2-hydroxyisobutyrylation pathway. Cell Res. 28, 111–125.pl
dc.description.referencesRohwerder, T., Rohde, M. T., Jehmlich, N., and Purswani, J. (2020) Actinobacterial degradation of 2-hydroxyisobutyric acid proceeds via acetone and formyl-CoA by employing a thiamine-dependent lyase reaction. Front. Microbiol. 11, 691.pl
dc.description.referencesSommer, B., von Moeller, H., Haack, M., Qoura, F., Langner, C., Bourenkov, G., Garbe, D., Loll, B., and Brück, T. (2015) Detailed structure– function correlations of Bacillus subtilis acetolactate synthase. ChemBioChem 16, 110–118.pl
dc.description.referencesWerther, T., Zimmer, A., Wille, G., Golbik, R., Weiss, M. S., and König, S. (2010) New insights into structure-function relationships of oxalyl CoA decarboxylase from Escherichia coli. FEBS J. 277, 2628–2640.pl
dc.description.referencesFurey, W., Arjunan, P., Chen, L., Sax, M., Guo, F., and Jordan, F. (1998) Structure-function relationships and flexible tetramer assembly in pyruvate decarboxylase revealed by analysis of crystal structures. Biochim. Biophys. Acta 1385, 253–270.pl
dc.description.referencesJumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O.,Tunyasuvunakool, K., Bates, R., Zídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589.pl
dc.description.referencesLeeper, F. J., Hawksley, D., Mann, S., Perez Melero, C., and Wood, M. D. (2005) Studies on thiamine diphosphate-dependent enzymes. Biochem. Soc. Trans. 33, 772–775.pl
dc.description.referencesFrank, R. A., Titman, C. M., Pratap, J. V., Luisi, B. F., and Perham, R. N. (2004) A molecular switch and proton wire synchronize the active sites in thiamine enzymes. Science 306, 872–876.pl
dc.description.referencesDai, S., Funk, L. M., von Pappenheim, F. R., Sautner, V., Paulikat, M., Schröder, B., Uranga, J., Mata, R. A., and Tittmann, K. (2019) Low-barrier hydrogen bonds in enzyme cooperativity. Nature 573, 609–613.pl
dc.description.referencesNemeria, N. S., Chakraborty, S., Balakrishnan, A., and Jordan, F. (2009) Reaction mechanisms of thiamin diphosphate enzymes: Defining states of ionization and tautomerization of the cofactor at individual steps. FEBS J. 276, 2432–2446.pl
dc.description.referencesThompson, M. W., Govindaswami, M., and Hersh, L. B. (2003) Mutation of active site residues of the puromycin-sensitive aminopeptidase: Conversion of the enzyme into a catalytically inactive binding protein. Arch. Biochem. Biophys. 413, 236–242.pl
dc.description.referencesYaneva, N., Schuster, J., Schäfer, F., Lede, V., Przybylski, D., Paproth, T., Harms, H., Müller, R. H., and Rohwerder, T. (2012) Bacterial acyl-CoA mutase specifically catalyzes coenzyme B12-dependent isomerization of 2-hydroxyisobutyryl-CoA and (S)-3-hydroxybutyryl-CoA. J. Biol. Chem. 287, 15502–15511.pl
dc.description.referencesHawksley, D., Griffin, D. A., and Leeper, F. J. (2001) Synthesis of 3-deazathiamine. J. Chem. Soc. Perkin Trans. 1, 144–148.pl
dc.description.referencesZhao, H., de Carvalho, L. P., Nathan, C., and Ouerfelli, O. (2010) A protecting group-free synthesis of deazathiamine: A step toward inhibitor design. Bioorg. Med. Chem. Lett. 20, 6472–6474.pl
dc.description.referencesMann, S., Perez Melero, C., Hawksley, D., and Leeper, F. J. (2004) Inhibition of thiamin diphosphate dependent enzymes by 3-deazathiamin diphosphate. Org. Biomol. Chem. 2, 1732–1741.pl
dc.description.referencesTickle, I. J., Flensburg, C., Keller, P., Paciorek, W., Sharff, A., Vonrhein, C., and Bricogne, G. (2018) STARANISO, Global Phasing Ltd, Cambridge, United Kingdom.pl
dc.description.referencesVagin, A., and Lebedev, A. (2015) MoRDa, an automatic molecular replacement pipeline. Acta Cryst. A 71, s19.pl
dc.description.referencesEmsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501.pl
dc.description.referencesMurshudov, G. N., Skubak, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F., and Vagin, A. A. (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367.pl
dc.description.referencesWilliams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., 3rd, Snoeyink, J., Adams, P. D., et al. (2018) MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315.pl
dc.description.referencesHolm, L. (2020) DALI and the persistence of protein shape. Protein Sci. 29, 128–140.pl
dc.description.referencesBrooks, B. R., Brooks, C. L., III, Mackerell, A. D., Jr., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., et al. (2009) CHARMM: The biomolecular simulation program. J. Comput. Chem. 30, 1545–1614.pl
dc.description.referencesBrooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983) CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217.pl
dc.description.referencesBest, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M., and MacKerell, A. D. (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone Φ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 8, 3257– 3273.pl
dc.description.referencesHuang, J., and MacKerell, A. D., Jr. (2013) CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–2145.pl
dc.description.referencesVanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., and Mackerell, A. D., Jr. (2010) CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690.pl
dc.description.referencesJo, S., Cheng, X., Lee, J., Kim, S., Park, S. J., Patel, D. S., Beaven, A. H., Lee, K. I., Rui, H., Park, S., Lee, H. S., Roux, B., MacKerell, A. D., Jr., Klauda, J. B., Qi, Y., et al. (2017) CHARMM-GUI 10 years for biomolecular modeling and simulation. J. Comput. Chem. 38, 1114–1124.pl
dc.description.referencesJo, S., Kim, T., Iyer, V. G., and Im, W. (2008) CHARMM-GUI: A webbased graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865.pl
dc.description.referencesvan Gunsteren, W. F., and Berendsen, H. J. C. (1977) Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys. 34, 1311– 1327.pl
dc.description.referencesJorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L. (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935.pl
dc.description.referencesNilsson, L. (2009) Efficient table lookup without inverse square roots for calculation of pair wise atomic interactions in classical simulations. J. Comput. Chem. 30, 1490–1498.pl
dc.description.referencesSteinbach, P. J., and Brooks, B. R. (1994) New spherical-cutoff methods for long-range forces in macromolecular simulation. J. Comput. Chem. 15, 667–683.pl
dc.description.referencesDarden, T., York, D., and Pedersen, L. (1993) Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092.pl
dc.description.referencesHoover, W. G. (1985) Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697.pl
dc.identifier.eissn1083-351X-
dc.description.volume298pl
dc.description.issue1pl
dc.description.firstpage1pl
dc.description.lastpage12pl
dc.identifier.orcid0000-0002-5709-8665-
dc.identifier.orcid0000-0003-4898-2958-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0002-2157-4180-
dc.identifier.orcid0000-0003-2358-0960-
dc.identifier.orcid0000-0002-5097-5266-
dc.identifier.orcid0000-0002-7038-0219-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0001-7877-8953-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
M_Zahn_G_Konig_HV_Cuong_Pham_R_Lazny_at_al_Mechanistic_details_of_the_actinobacterial.pdf3,98 MBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons