REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/16612
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorŚwiderski, Grzegorz-
dc.contributor.authorŁaźny, Ryszard-
dc.contributor.authorSienkiewicz, Michał-
dc.contributor.authorKalinowska, Monika-
dc.contributor.authorŚwisłocka, Renata-
dc.contributor.authorAcar, Ali Osman-
dc.contributor.authorGolonko, Aleksandra-
dc.contributor.authorMatejczyk, Marzena-
dc.contributor.authorLewandowski, Włodzimierz-
dc.date.accessioned2024-06-05T07:32:28Z-
dc.date.available2024-06-05T07:32:28Z-
dc.date.issued2021-
dc.identifier.citationMaterials, Volume 14, Issue 12 (2021), p. 1-21pl
dc.identifier.issn1996-1944-
dc.identifier.urihttp://hdl.handle.net/11320/16612-
dc.description.abstractDacarbazine (DAC) 5-(3,3-dimethyl-1-triazenyl)imidazole-4-carboxamide is an imidazolecarboxamide derivative that is structurally related to purines. DAC belongs to the triazene compounds, which are a group of alkylating agents with antitumor and mutagenic properties. DAC is a non-cell cycle specific drug, active in all phases of the cellular cycle. In the frame of this work the 3d metal complexes (cobalt and copper) with dacarbazine were synthesized. Their spectroscopic properties by the use of FT-IR, FT-Raman, and 1HNMR were studied. The structures of dacarbazine and its complexes with copper(II) and cobalt(II) were calculated using DFT methods. The effect of metals on the electronic charge distribution of dacarbazine was discussed on the basis of calculated NBO atomic charges. The reactivity of metal complexes in relation to ligand alone was estimated on the basis of calculated energy of HOMO and LUMO orbitals. The aromaticity of the imidazole ring in dacarbazine and the complexes were compared (on the basis of calculated geometric indices of aromaticity). Thermal stability of the investigated 3d-metal complexes with dacarbazine and the products of their thermal decomposition were analyzed.pl
dc.description.sponsorshipStudies have been carried out in the framework of the work no. WZ/WB-IIS/5/2020 in Bialystok University of Technology and financed from the funds for Science, Ministry of Science and Higher Education of Poland.pl
dc.language.isoenpl
dc.publisherMDPIpl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectdacarbazinepl
dc.subjecttriazenepl
dc.subjectanticancer propertiespl
dc.subject3d metal complexespl
dc.subjectspectroscopy (IR, Raman)pl
dc.subjectNMRpl
dc.titleSynthesis, Spectroscopic, and Theoretical Study of Copper and Cobalt Complexes with Dacarbazinepl
dc.typeArticlepl
dc.rights.holderCopyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).pl
dc.identifier.doi10.3390/ma14123274-
dc.description.EmailGrzegorz Świderski: g.swiderski@pb.edu.plpl
dc.description.EmailRyszard Łaźny: lazny@uwb.edu.plpl
dc.description.EmailMichał Sienkiewicz: mikes@uwb.edu.plpl
dc.description.EmailMonika Kalinowska: m.kalinowska@pb.edu.plpl
dc.description.EmailRenata Świsłocka: r.swislocka@pb.edu.plpl
dc.description.EmailAli Osman Acar: aacar@etu.edu.trpl
dc.description.EmailAleksandra Golonko: olau.95@gmail.compl
dc.description.EmailMarzena Matejczyk: m.matejczyk@pb.edu.plpl
dc.description.EmailWłodzimierz Lewandowski: w.lewandowski@pb.edu.plpl
dc.description.AffiliationGrzegorz Świderski - Department of Chemistry, Biology and Biotechnology, Bialystok University of Technologypl
dc.description.AffiliationRyszard Łaźny - Faculty of Chemistry, University of Bialystokpl
dc.description.AffiliationMichał Sienkiewicz - Faculty of Chemistry, University of Bialystokpl
dc.description.AffiliationMonika Kalinowska - Department of Chemistry, Biology and Biotechnology, Bialystok University of Technologypl
dc.description.AffiliationRenata Świsłocka - Department of Chemistry, Biology and Biotechnology, Bialystok University of Technologypl
dc.description.AffiliationAli Osman Acar - Material Science and Nanotechnology Engineering, TOBB University of Economics and Technologypl
dc.description.AffiliationAleksandra Golonko - Institute of Agricultural and Food Biotechnology, Department of Microbiologypl
dc.description.AffiliationMarzena Matejczyk - Department of Chemistry, Biology and Biotechnology, Bialystok University of Technologypl
dc.description.AffiliationWłodzimierz Lewandowski - Department of Chemistry, Biology and Biotechnology, Bialystok University of Technologypl
dc.description.referencesSerrone, L.; Zeuli, M.; Sega, F.M.; Cognetti, F. Dacarbazine-based chemotherapy for metastatic melanoma: Thirty-year experience overview. J. Exp. Clin. Cancer Res. 2000, 19, 21–34.pl
dc.description.referencesReid, J.M.; Kuffel, M.J.; Miller, J.K.; Rios, R.; Ammes, M.M. Metabolic activation of dacarbazine by human cytochromes p450: The role of CYP1A1, CYP1A2e CYP2E1. Clin. Cancer Res. 1999, 5, 2192–2197.pl
dc.description.referencesNussbaumera, S.; Bonnabry, P.; Veuthey, J.L.; Fleury-Souverain, S. Analysis of anticancer drugs: A review. Talanta 2011, 85, 2265–2289.pl
dc.description.referencesMoody, C.L.; Wheelhouse, R.T. The Medicinal Chemistry of Imidazotetrazine Prodrugs. Pharmaceuticals 2014, 7, 797–838.pl
dc.description.referencesBonmassar, L.; Marchesi, F.; Pascale, E.; Franzese, O.; Margison, G.P.; Bianchi, A.; D’Atri, S.; Bernardini, S.; Lattuada, D.; Bonmassar, E.; et al. Triazene compounds in the treatment of acute myeloid leukemia: A short review and a case report. Curr. Med. Chem. 2013, 20, 2389–2401.pl
dc.description.referencesMarchesi, F.; Turriziani, M.; Tortorelli, G.; Avvisati, G.; Torino, F.; Vecchis, L.D. Triazene compounds: Mechanism of action and related DNA repair systems. Pharmacol. Res. 2007, 56, 275–287.pl
dc.description.referencesPourahmad, J.; Amirmostofian, M.; Kobarfard, F.; Shahraki, J. Biological reactive intermediates that mediate dacarbazine cytotoxicity. Cancer Chemother. Pharmacol. 2009, 65, 89–96.pl
dc.description.referencesHayward, I.P.; Parson, P.G. Epigenetic effects of the methylating agent 5-(3-dimethyl-1-triazeno)-imidazole-4-carboxamide in human melanoma cells. Aust. J. Exp. Biol. Med. Sci. 1984, 62, 597–606.pl
dc.description.referencesAl-Qatati, A.; Aliwaini, S. Combined pitavastatin and dacarbazine treatment activates apoptosis and autophagy resulting in synergistic cytotoxicity in melanoma cells. Oncol. Lett. 2017, 14, 7993–7999.pl
dc.description.referencesNaserian, M.; Ramazani, E.; Iranshahi, M.; Tayarani-Najaran, Z. The Role of SAPK/JNK pathway in the synergistic effects of metformin and dacarbazine on apoptosis in Raji and Ramos lymphoma cells. Curr. Mol. Pharmacol. 2018, 11, 336–342.pl
dc.description.referencesFinotello, R.; Stefanello, D.; Zini, E.; Marconato, L. Comparison of doxorubicin–cyclophosphamide with doxorubicin–dacarbazine for the adjuvant treatment of canine hemangiosarcoma. Vet. Comp. Oncol. 2015, 15, 25–35.pl
dc.description.referencesSong, M.; Zhang, R.; Wang, X. Nano-titanium dioxide enhanced biosensing of the interaction of dacarbazine with DNA and DNA bases. Mater. Lett. 2006, 60, 2143–2147.pl
dc.description.referencesShen, Q.; Wang, X.; Fu, D. The amplification effect of functionalized gold nanopar-ticles on the binding of anticancer drug dacarbazine to DNA and DNA bases. Appl. Surf. Sci. 2008, 255, 577–580.pl
dc.description.referencesMatejczyk, M.; Świsłocka, R.; Golonko, A.; Lewandowski, W.; Hawrylik, E. Cytotoxic, genotoxic and antimicrobial activity of caffeic and rosmarinic acids and their lithium, sodium and potassium salts as potential anticancer compounds. Adv. Med. Sci. 2008, 63, 14–21.pl
dc.description.referencesJabłońska-Trypuć, A.; Świderski, G.; Krętowski, R.; Lewandowski, W. Newly synthesized doxorubicin complexes with selected metals—Synthesis, structure and anti-breast cancer activity. Molecules 2017, 22, 1106.pl
dc.description.referencesTrynda-Lemiesz, L.; Śliwińska-Hill, U. Kompleksy metali w terapii nowotworowej. Teraźniejszość i przyszłość. J. Oncol. 2011, 61, 465–474.pl
dc.description.referencesKumari, T.; Shukla, J.; Joshin, S. Study on the complex formation and anticancer effect of complex, zinc(II)-dacarbazine. Int. J. Chem. Sci. 2011, 9, 1751–1762.pl
dc.description.referencesShukla, J.; Pitre, K.S. Role of bio-metal Fe(III) in anticancer effect of dacarbazine. Indian J. Physiol. Pharmacol. 1998, 42, 223–230.pl
dc.description.referencesTemerk, Y.; Ibrahim, H.I. Binding mode and thermodynamic studies on the interaction of the anticancer drug dacarbazine and dacarbazine–Cu(II) complex with single and double stranded DNA. J. Pharm. Biomed. Anal. 2014, 95, 26–33.pl
dc.description.referencesLewandowski, W.; Kalinowska, M.; Lewandowska, H. The influence of metals on the electronic system of biologically important ligands, Spectroscopic study of benzoates, salicylates, nicotinates and isoorates. Review. J. Inorg. Biochem. 2005, 99, 1407–1423.pl
dc.description.referencesKoczoń, P.; Hrynaszkiewicz, T.; Świsłocka, R.; Samsonowicz, M.; Lewandowski, W. Spectroscopic (Raman, FT-IR and NMR) study of alkaline metal nicotinates and isonicotinates. Vib. Spectrosc. 2003, 33, 215–222.pl
dc.description.referencesLewandowska, M.; Janowski, A.; Lewandowski, W. Spectroscopic Investigations on Lanthanide Complexes with Salicylic Acid. Can. J. Spectr. 1984, 29, 87–92.pl
dc.description.referencesLewandowski, W.; Kalinowska, M.; Lewandowska, H. The influence of halogens on the electronic system of biologically important ligands. Spectroscopic study of halogenobenzoic acids, halogenobenzoates and 5-halogenouracils. Review. Inorg. Chim. Acta 2005, 358, 2155–2166.pl
dc.description.referencesKoczoń, P.; Piekut, J.; Borawska, M.; Lewandowski, W. Vibrational structure and antimicrobial activity of selected isonicotinates, potassium picolinate and nicotinate. J. Mol. Struct. 2003, 651–653, 651–656.pl
dc.description.referencesKalinowska, M.; Borawska, M.; Świsłocka, R.; Piekut, J.; Lewandowski, W. Spectroscopic (IR, Raman, UV, 1H and 13C NMR) and microbiological studies of Fe(III), Ni(II), Cu(II), Zn(II) and Ag(I) picolinates. J. Mol. Struct. 2007, 834–836, 419–425.pl
dc.description.referencesŚwiderski, G.; Świsłocka, R.; Łyszczek, R.; Wojtulewski, S.; Samsonowicz, M.; Lewandowski, W. Thermal, spectroscopic, X-ray and theoretical studies of metal complexes (sodium, manganese, copper, nickel, cobalt and zinc) with pyrimidine-5-carboxylic and pyrimidine-2-carboxylic acids. J. Therm. Anal. Calorim. 2019, 138, 2813–2837.pl
dc.description.referencesŚwiderski, G.; Wojtulewski, S.; Kalinowska, M.; Świsłocka, R.; Wilczewska, A.Z.; Pietryczuk, A.; Cudowski, A.; Lewandowski, W. The influence of selected transition metal ions on the structure, thermal and microbiological properties of pyrazine-2-carboxylic acid. Polyhedron 2020, 175, 114173.pl
dc.description.referencesŚwiderski, G.; Łyszczek, R.; Wojtulewski, S.; Kalinowska, M.; Świsłocka, R.; Lewandowski, W. Comparison of structural, spectroscopic, theoretical and thermal properties of metal complexes (Zn, Mn (II), Cu (II), Ni (II) and Co (II)) of pyridazine-3- carboxylic acid and pyridazine-4-carboxylic acids. Inorg. Chim. Acta 2020, 512, 119865.pl
dc.description.referencesŚwiderski, G.; Kalinowska, M.; Wilczewska, A.Z.; Malejko, J.; Lewandowski, W. Lanthanide complexes withpyridinecarboxylic acids–Spectroscopic and thermal studies. Polyhedron 2018, 150, 97–109.pl
dc.description.referencesŚwiderski, G.; Kalinowska, M.; Rusinek, I.; Samsonowicz, M.; Rzączyńska, Z.; Lewandowski, W. Spectroscopic (IR, Raman) and thermogravimetric studies of 3d-metal cinchomeronates and dinicotinates. J. Therm. Anal. Calorim. 2016, 126, 1521–1532.pl
dc.description.referencesŚwiderski, G.; Lewandowska, H.; Świsłocka, R.; Wojtulewski, S.; Siergiejczyk, L.; Wilczewska, A.Z.; Misztalewska, I. Spectroscopic (IR, Raman, NMR), thermal and theoretical (DFT) study of alkali metal dipicolinates (2,6) and quinolinates (2,3). Arab. J. Chem. 2019, 12, 4414–4426.pl
dc.description.referencesPadnya, P.; Shibaeva, K.; Arsenyev, M.; Baryshnikova, S.; Terenteva, O.; Shiabiev, I.; Khannanov, A.; Boldyrev, A.; Gerasimov, A.; Grishaev, D.; et al. Catechol-Containing Schiff Bases on Thiacalixarene: Synthesis, Copper (II) Recognition, and Formation of Organic-Inorganic Copper-Based Materials. Molecules 2021, 26, 2334.pl
dc.description.referencesColombo, A.; Dragonetti, C.; Roberto, D.; Fagnani, F. Copper complexes as alternative redox mediators in dye-sensitized solar cells. Molecules 2021, 26, 194.pl
dc.description.referencesPessoa, J.C.; Correia, I. Misinterpretations in Evaluating Interactions of Vanadium Complexes with Proteins and Other Biological Targets. Inorganics 2021, 9, 17.pl
dc.description.referencesSoldatović, T. Mechanism of Interactions of Zinc(II) and Copper(II) Complexes with Small Biomolecules. In Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry; IntechOpen: London, UK, 2018.pl
dc.description.referencesDe Souza, I.C.A.; De Souza Santana, S.; Gómez, J.G.; Guedes, G.P.; Madureira, J.; De Ornelas Quintal, S.M.; Lanznaster, M. Investigation of cobalt(iii)-phenylalanine complexes for hypoxia-activated drug delivery. Dalton Trans. 2020, 49, 16425–16439.pl
dc.description.referencesGaussian; Version 9, Revision A.02; Gaussian Inc.: Wallingford, CT, USA, 2016.pl
dc.description.referencesKrygowski, T.M.; Cyrański, M. Separation of the energetic and geometric contributions to the aromaticity. Part IV. A general model for thep-electron systems. Tetrahedron 1996, 52, 10255–10264.pl
dc.description.referencesBird, C. A new aromaticity index and its application to fivemembered ring heterocycles. Tetrahedron 1985, 41, 1409–1414.pl
dc.description.referencesWeinhold, F.; Landis, C.R. Natural bond orbitals and extensions of localized bonding concepts. Chem. Educ. Res. Pract. 2001, 2, 91–104.pl
dc.description.referencesHumphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.pl
dc.description.referencesMorris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791.pl
dc.description.referencesDassault Systèmes. Biovia Discovery Studio Modeling Environment; Dassault Systèmes Biovia: San Diego, CA, USA, 2016; Available online: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/ (accessed on 13 June 2021).pl
dc.description.referencesPettersen, E.F.; Goodard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612.pl
dc.description.referencesGunasekaran, S.; Kumaresan, S.; Arunbalaji, R.; Anand, G.; Srinivasan, S. Density functional theory study of vibrational spectra, and assignment of fundamental modes of dacarbazine. J. Chem. Sci. 2008, 120, 315–324.pl
dc.description.referencesFreeman, H.C.; Hutchinson, N.D. The crystal structure of the anti-tumor agent 5-(3,3-dimethyl-1-triazenyl) imidazole-4-carboxamide. Acta Crystall. Sec. B 1979, 35, 2051–2054.pl
dc.description.referencesFreeman, H.C.; Hutchinson, N.D. The crystal structures of two copper(II) complexes of the antitumor agent 5-(3,3-dimethyl-1-triazenyl) imidazole-4-carboxamide. Acta Crystall. Sec. B 1979, 35, 2045–2050.pl
dc.description.referencesŚwiderski, G.; Wilczewska, A.Z.; Świsłocka, R.; Kalinowska, M.; Lewandowski, W. Spectroscopic (IR, Raman, UV–Vis) study and thermal analysis of 3d-metal complexes with 4-imidazolecarboxylic acid. J. Therm. Anal. Calorim. 2018, 134, 513–525.pl
dc.description.referencesFukui, K. Role of frontier orbitals in chemical reactions. Science 1982, 218, 747–754.pl
dc.description.referencesParr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924.pl
dc.description.referencesSamsonowicz, M. Molecular structure of phenyl- and phenoxyacetic acids—Spectroscopic and theoretical study. Spectrochim. Acta A 2014, 118, 1386–1425.pl
dc.description.referencesAhmad, I.; Ahmad, M. Dacarbazine as a minor groove binder of DNA: Spectroscopic, biophysical and molecular docking studies. Int. J. Biol. Macromol. 2015, 79, 193–200.pl
dc.description.referencesWang, X.; Li, Y.; Gong, S.; Fu, D. A spectroscopic study on the DNA binding behavior of the anticancer drug dacarbazine. Spectrosc. Lett. 2002, 35, 751–756.pl
dc.description.referencesRadi, A.E.; Eissa, A.; Nassef, H.M. Voltammetric and spectroscopic studies on the binding of the antitumor drug dacarbazine with DNA. J. Electroanal. Chem. 2014, 717–718, 24–28.pl
dc.description.volume14pl
dc.description.number12pl
dc.description.firstpage1pl
dc.description.lastpage21pl
dc.identifier.citation2Materialspl
dc.identifier.orcid0000-0003-4442-6348-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0002-0839-9891-
dc.identifier.orcid0000-0001-7034-9126-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0002-8387-7961-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons