REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/16604
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorNiemirowicz-Laskowska, Katarzyna-
dc.contributor.authorGłuszek, Katarzyna-
dc.contributor.authorPiktel, Ewelina-
dc.contributor.authorPajuste, Karlis-
dc.contributor.authorDurnaś, Bonita-
dc.contributor.authorKról, Grzegorz-
dc.contributor.authorWilczewska, Agnieszka Z.-
dc.contributor.authorJanmey, Paul A.-
dc.contributor.authorPlotniece, Aiva-
dc.contributor.authorBucki, Robert-
dc.date.accessioned2024-06-04T09:56:10Z-
dc.date.available2024-06-04T09:56:10Z-
dc.date.issued2018-
dc.identifier.citationInternational Journal of Nanomedicine, Volume 13, 2018, p. 3411–3424pl
dc.identifier.issn1178-2013-
dc.identifier.urihttp://hdl.handle.net/11320/16604-
dc.description.abstractBackground: 1,4-Dihydropyridine (1,4-DHP) and its derivatives are well-known calcium channel blockers with antiarrhythmic and antihypertensive activities. These compounds exhibit pleiotropic effects including antimicrobial activities that rely on their positive charge and amphipathic nature. Use of magnetic nanoparticles (MNPs) as carriers of 1,4-DHP modulates their properties and enables improved formulations with higher efficacy and less toxicity. Methods: In this study, the antimicrobial and immunomodulatory activities of novel 1,4-DHP derivatives in free form and immobilized on MNPs were determined by evaluating pathogen outgrowth and proinflammatory cytokine release in experimental settings that involve incubation of various 1,4-DHPs with clinical isolates of bacteria or fungi as well as mammalian cell culture models. Results: Conventional immobilization of 1,4-DHP on aminosilane-coated MNPs markedly enhances their antimicrobial activity compared to nonimmobilized molecules, in part because of the higher affinity of these nanosystems for bacterial cell wall components in the presence of human body fluids. Conclusion: Optimized nanosystems are characterized by improved biocompatibility and higher anti-inflammatory properties that provide new opportunities for the therapy of infectious diseasespl
dc.description.sponsorshipThis study was supported by the National Science Center, Poland, under grant UMO-2015/17/B/NZ6/03473 (to RB). In 2016, KN-L was awarded a fellowship from the Foundation for Polish Science (FNP). This study was conducted with the use of equipment purchased by the Medical University of Białystok as a part of the RPOWP 2007–2013 funding, Priority I, Axis 1.1, contract no UDA-RPPD.01.01.00-20-001/15-00 dated June 26, 2015.pl
dc.language.isoenpl
dc.publisherDove Presspl
dc.rightsUznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectmagnetic nanoparticlespl
dc.subject1,4-dihydropyridinepl
dc.subjectantibacterialpl
dc.subjectantifungalpl
dc.subjectimmunomodulatory propertiespl
dc.titleBactericidal and immunomodulatory properties of magnetic nanoparticles functionalized by 1,4-dihydropyridinespl
dc.typeArticlepl
dc.rights.holder© 2018 Niemirowicz-Laskowska et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).pl
dc.identifier.doi10.2147/IJN.S157564-
dc.description.EmailRobert Bucki: buckirobert@gmail.compl
dc.description.AffiliationKatarzyna Niemirowicz-Laskowska - Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystokpl
dc.description.AffiliationKatarzyna Głuszek - Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystokpl
dc.description.AffiliationEwelina Piktel - Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystokpl
dc.description.AffiliationKarlis Pajuste - Laboratory of Membrane Active Compounds and β-Diketones, Latvian Institute of Organic Synthesis, Riga, Latviapl
dc.description.AffiliationBonita Durnaś - Department of Microbiology and Immunology, The Faculty of Health Sciences of the Jan Kochanowski University in Kielcepl
dc.description.AffiliationGrzegorz Król - Department of Microbiology and Immunology, The Faculty of Health Sciences of the Jan Kochanowski University in Kielcepl
dc.description.AffiliationAgnieszka Z. Wilczewska - Institute of Chemistry, University of Bialystokpl
dc.description.AffiliationPaul A Janmey - Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvaniapl
dc.description.AffiliationAiva Plotniece - Laboratory of Membrane Active Compounds and β-Diketones, Latvian Institute of Organic Synthesis, Riga, Latviapl
dc.description.AffiliationRobert Bucki - Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystokpl
dc.description.referencesYang J, Jiang C, Yang J, Qian C, Fang D. A clean procedure for the synthesis of 1,4-dihydropyridines via Hantzsch reaction in water. Green Chem Lett Rev. 2013;6(3):262–267.pl
dc.description.referencesFilipan-Litvić M, Litvić M, Cepanec I, Vinković V. Hantzsch synthesis of 2,6-dimethyl-3,5-dimethoxycarbonyl-4-(o-methoxyphenyl)-1,4-dihydropyridine; a novel cyclisation leading to an unusual formation of 1-amino-2-methoxy-carbonyl-3,5-bis(o-methoxyphenyl)-4-oxacyclohexan-1-ene. Molecules. 2007;12(11):2546–2558.pl
dc.description.referencesKhedkar SA, Auti PB. 1, 4-Dihydropyridines: a class of pharmacologically important molecules. Mini Rev Med Chem. 2014;14(3):282–290.pl
dc.description.referencesYamagishi S, Nakamura K, Takenaka K, Matsui T, Inoue H. Pleiotropic effects of nifedipine on atherosclerosis. Curr Pharm Des. 2006;12(12): 1543–1547.pl
dc.description.referencesToma L, Stancu CS, Sanda GM, Sima AV. Anti-oxidant and antiinflammatory mechanisms of amlodipine action to improve endothelial cell dysfunction induced by irreversibly glycated LDL. Biochem Biophys Res Commun. 2011;411(1):202–207.pl
dc.description.referencesPrasanthi G, Prasad KV, Bharathi K. Synthesis, anticonvulsant activity and molecular properties prediction of dialkyl 1-(di(ethoxycarbonyl) methyl)-2,6-dimethyl-4-substituted-1,4-dihydropyridine-3,5-dicarboxylates. Eur J Med Chem. 2014;73:97–104.pl
dc.description.referencesKumar RS, Idhayadhulla A, Abdul Nasser AJ, Selvin J. Synthesis and anticoagulant activity of a new series of 1,4-dihydropyridine derivatives. Eur J Med Chem. 2011;46(2):804–810.pl
dc.description.referencesKumar R, Idhayadhulla A, Abdul Nasser A, Selvin J. Synthesis and antimicrobial activity of a new series of 1,4-dihydropyridine derivatives. J Serb Chem Soc. 2011;76(1):1–11.pl
dc.description.referencesReimão JQ, Scotti MT, Tempone AG. Anti-leishmanial and antitrypanosomal activities of 1,4-dihydropyridines: in vitro evaluation and structure-activity relationship study. Bioorg Med Chem. 2010;18(22): 8044–8053.pl
dc.description.referencesSirisha K, Achaiah G, Reddy VM. Facile synthesis and antibacterial, antitubercular, and anticancer activities of novel 1,4-dihydropyridines. Arch Pharm (Weinheim). 2010;343(6):342–352.pl
dc.description.referencesZorniak M, Mitrega K, Krzeminski TF. [Derivatives of 1,4-dihydropyridines as “priviledged structures” and their pharmacological potential]. Kardiol Pol. 2011;69(suppl 3):100–103. Polish.pl
dc.description.referencesMarciniec B, Ogrodowczyk M. Photo- and radiostability of some 1,4-dihydropyridine derivatives in the solid state. Acta Pol Pharm. 2003; 60(2):151–155.pl
dc.description.referencesZhang D, Flint O, Wang L, et al. Cytochrome P450 11A1 bioactivation of a kinase inhibitor in rats: use of radioprofiling, modulation of metabolism, and adrenocortical cell lines to evaluate adrenal toxicity. Chem Res Toxicol. 2012;25(3):556–571.pl
dc.description.referencesMiri R, Javidnia K, Amirghofran Z, et al. Cytotoxic effect of some 1,4-dihydropyridine derivatives containing nitroimidazole moiety. Iran J Pharm Res. 2011;10(3):497–503.pl
dc.description.referencesNiemirowicz K, Piktel E, Wilczewska AZ, et al. Core-shell magnetic nanoparticles display synergistic antibacterial effects against Pseudomonas aeruginosa and Staphylococcus aureus when combined with cathelicidin LL-37 or selected ceragenins. Int J Nanomedicine. 2016;11:5443–5455.pl
dc.description.referencesNiemirowicz K, Durnaś B, Tokajuk G, et al. Magnetic nanoparticles as a drug delivery system that enhance fungicidal activity of polyene antibiotics. Nanomedicine. 2016;12(8):2395–2404.pl
dc.description.referencesTaylor E, Webster TJ. Reducing infections through nanotechnology and nanoparticles. Int J Nanomedicine. 2011;6:1463–1473.pl
dc.description.referencesNiemirowicz K, Durnaś B, Piktel E, Bucki R. Development of antifungal therapies using nanomaterials. Nanomedicine (Lond). 2017;12(15): 1891–1905.pl
dc.description.referencesKidd TJ, Mills G, Sá-Pessoa J, et al. A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Mol Med. 2017;9(4):430–447.pl
dc.description.referencesLogan LK, Weinstein RA. The epidemiology of carbapenem-resistant enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215(suppl_1):S28–S36.pl
dc.description.referencesMassart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn. 1981;17(2):1247–1248.pl
dc.description.referencesNiemirowicz K, Swiecicka I, Wilczewska AZ, et al. Gold-functionalized magnetic nanoparticles restrict growth of Pseudomonas aeruginosa. Int J Nanomedicine. 2014;9:2217–2224.pl
dc.description.referencesMeletiadis J, Mouton JW, Meis JF, et al. Comparison of spectrophotometric and visual readings of NCCLS method and evaluation of a colorimetric method based on reduction of a soluble tetrazolium salt, 2,3-bis [2-methoxy-4-nitro-5-[(sulfenylamino) carbonyl]-2H-tetrazoliumhydroxide], for antifungal susceptibility testing of Aspergillus species. J Clin Microbiol. 2001;39(12):4256–4263.pl
dc.description.referencesYao Y, Ohko Y, Sekiguchi Y, Fujishima A, Kubota Y. Self-sterilization using silicone catheters coated with Ag and TiO2 nanocomposite thin film. J Biomed Mater Res B Appl Biomater. 2008;85(2):453–460.pl
dc.description.referencesHussein-Al-Ali SH, El Zowalaty ME, Hussein MZ, Ismail M, Webster TJ. Synthesis, characterization, controlled release, and antibacterial studies of a novel streptomycin chitosan magnetic nanoantibiotic. Int J Nanomedicine. 2014;9:549–557.pl
dc.description.referencesNiemirowicz K, Durnaś B, Tokajuk G, et al. Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA-13. Sci Rep. 2017;7(1):4610.pl
dc.description.referencesSridhar J, Kuriyan AE, Flynn HW, Miller D. Endophthalmitis caused by Pseudomonas aeruginosa: clinical features, antibiotic susceptibilities, and treatment outcomes. Retina. 2015;35(6):1101–1106.pl
dc.description.referencesBarreras US, Méndez FT, Martínez RE, Valencia CS, Rodríguez PR, Rodríguez JP. Chitosan nanoparticles enhance the antibacterial activity of chlorhexidine in collagen membranes used for periapical guided tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2016;58:1182–1187.pl
dc.description.referencesFeliciani C, Gupta AK, Sauder DN. Keratinocytes and cytokine/growth factors. Crit Rev Oral Biol Med. 1996;7(4):300–318.pl
dc.description.referencesGloire G, Legrand-Poels S, Piette J. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006;72(11): 1493–1505.pl
dc.description.referencesDavies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417–433.pl
dc.description.referencesKatz AM, Leach NM. Differential effects of 1,4-dihydropyridine calcium channel blockers: therapeutic implications. J Clin Pharmacol. 1987; 27(11):825–834.pl
dc.description.referencesVijesh AM, Isloor AM, Peethambar SK, Shivananda KN, Arulmoli T, Isloor NA. Hantzsch reaction: synthesis and characterization of some new 1,4-dihydropyridine derivatives as potent antimicrobial and antioxidant agents. Eur J Med Chem. 2011;46(11):5591–5597.pl
dc.description.referencesBriede J, Stivrina M, Vigante B, Stoldere D, Duburs G. Acute effect of antidiabetic 1,4-dihydropyridine compound cerebrocrast on cardiac function and glucose metabolism in the isolated, perfused normal rat heart. Cell Biochem Funct. 2008;26(2):238–245.pl
dc.description.referencesNúñez-Vergara LJ, Squella JA, Bollo-Dragnic S, et al. Nitro aryl 1,4-dihydropyridine derivatives: effects on Trypanosoma cruzi. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1997;118(1): 105–111.pl
dc.description.referencesSirisha K, Bikshapathi D, Achaiah G, Reddy VM. Synthesis, antibacterial and antimycobacterial activities of some new 4-aryl/heteroaryl-2,6-dimethyl-3,5-bis-N-(aryl)-carbamoyl-1,4-dihydropyridines. Eur J Med Chem. 2011;46(5):1564–1571.pl
dc.description.referencesChhillar AK, Arya P, Mukherjee C, et al. Microwave-assisted synthesis of antimicrobial dihydropyridines and tetrahydropyrimidin-2-ones: novel compounds against aspergillosis. Bioorg Med Chem. 2006; 14(4):973–981.pl
dc.description.referencesTasaka S, Ohmori H, Gomi N, et al. Synthesis and structure – activity analysis of novel dihydropyridine derivatives to overcome multidrug resistance. Bioorg Med Chem Lett. 2001;11(2):275–277.pl
dc.description.referencesMiri R, Mehdipour A. Dihydropyridines and atypical MDR: a novel perspective of designing general reversal agents for both typical and atypical MDR. Bioorg Med Chem. 2008;16(18):8329–8334.pl
dc.description.referencesHetzel D, Strauss W, Bernard K, Li Z, Urboniene A, Allen LF. A phase III, randomized, open-label trial of ferumoxytol compared with iron sucrose for the treatment of iron deficiency anemia in patients with a history of unsatisfactory oral iron therapy. Am J Hematol. 2014;89(6): 646–650.pl
dc.description.referencesNiemirowicz K, Markiewicz KH, Wilczewska AZ, Car H. Magnetic nanoparticles as new diagnostic tools in medicine. Adv Med Sci. 2012; 57(2):196–207.pl
dc.description.referencesPiktel E, Niemirowicz K, Wątek M, Wollny T, Deptuła P, Bucki R. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy. J Nanobiotechnology. 2016;14(1):39.pl
dc.description.referencesAzam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomedicine. 2012;7:6003–6009.pl
dc.description.referencesLeuba KD, Durmus NG, Taylor EN, Webster TJ. Short communication: carboxylate functionalized superparamagnetic iron oxide nanoparticles (SPION) for the reduction of S. aureus growth post biofilm formation. Int J Nanomedicine. 2013;8:731–736.pl
dc.description.referencesAkbarzadeh T, Fallah Tafti A, Samadi N, et al. Synthesis and cloxacillin antimicrobial enhancement of 2-methylsulfonylimidazolyl-1,4-dihydropyridine derivatives. Daru. 2010;18(2):118–123.pl
dc.description.referencesBucki R, Janmey P. Extracellular aggregation of polyelectrolytes escaped from the cell interior: mechanisms and physiological consequences. Curr Opin Colloid Interface Sci. 2016;26:84–89.pl
dc.description.referencesCieśluk M, Piktel E, Wątek M, et al. Neutrophil extracellular traps as the main source of eDNA. Med Stud. 2017;33(2):137–145.pl
dc.description.referencesRuden S, Hilpert K, Berditsch M, Wadhwani P, Ulrich AS. Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides. Antimicrob Agents Chemother. 2009;53(8): 3538–3540.pl
dc.description.volume13pl
dc.description.firstpage3411pl
dc.description.lastpage3424pl
dc.identifier.citation2International Journal of Nanomedicinepl
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons