Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/16603
Pełny rekord metadanych
Pole DC | Wartość | Język |
---|---|---|
dc.contributor.author | Misiak, Paweł | - |
dc.contributor.author | Niemirowicz-Laskowska, Katarzyna | - |
dc.contributor.author | Markiewicz, Karolina H. | - |
dc.contributor.author | Misztalewska-Turkowicz, Iwona | - |
dc.contributor.author | Wielgat, Przemysław | - |
dc.contributor.author | Kurowska, Izabela | - |
dc.contributor.author | Siemaszko, Gabriela | - |
dc.contributor.author | Destarac, Mathias | - |
dc.contributor.author | Car, Halina | - |
dc.contributor.author | Wilczewska, Agnieszka Z. | - |
dc.date.accessioned | 2024-06-04T09:31:54Z | - |
dc.date.available | 2024-06-04T09:31:54Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | International Journal of Nanomedicine, Vol. 15, 2020, p. 7263-7278 | pl |
dc.identifier.issn | 1176-9114 | - |
dc.identifier.uri | http://hdl.handle.net/11320/16603 | - |
dc.description.abstract | Purpose: Efficient intracellular delivery of a therapeutic compound is an important feature of smart drug delivery systems (SDDS). Modification of a carrier structure with a cellpenetrating ligand, ie, cholesterol moiety, is a strategy to improve cellular uptake. Cholesterol end-capped poly(N-isopropylacrylamide)s offer a promising foundation for the design of efficient thermoresponsive drug delivery systems. Methods: A series of cholesterol end-capped poly(N-isopropylacrylamide)s (PNIPAAm) with number-average molar masses ranging from 3200 to 11000 g·mol–1 were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization from original xanthate-functionalized cholesterol and self-assembled into micelles. The physicochemical characteristics and cytotoxicity of cholesterol end-capped poly(N-isopropylacrylamide)s have been thoroughly investigated. Results: Phase transition temperature dependence on the molecular weight and hydrophilic/hydrophobic ratio in the polymers were observed in water. Biological test results showed that the obtained materials, both in disordered and micellar form, are non-hemolytic, highly compatible with fibroblasts, and toxic to glioblastoma cells. It was found that the polymer termini dictates the mode of action of the system. Conclusion: The cholesteryl moiety acts as a cell-penetrating agent, which enables disruption of the plasma membrane and in effect leads to the restriction of the tumor growth. Cholesterol end-capped PNIPAAm showing in vitro anticancer efficacy can be developed not only as drug carriers but also as components of combined/synergistic therapy. | pl |
dc.language.iso | en | pl |
dc.publisher | Dove Medical Press | pl |
dc.rights | Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.subject | cholesterol-end capped poly(N-isopropylacrylamide) | pl |
dc.subject | cell-penetrating molecules | pl |
dc.subject | thermoresponsive polymer micelles | pl |
dc.subject | drug carriers | pl |
dc.title | Evaluation of Cytotoxic Effect of Cholesterol End-Capped Poly(N-Isopropylacrylamide)s on Selected Normal and Neoplastic Cells | pl |
dc.type | Article | pl |
dc.rights.holder | © 2020 Misiak et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). | pl |
dc.identifier.doi | 10.2147/ijn.s262582 | - |
dc.description.Email | Agnieszka Z. Wilczewska: agawilcz@uwb.edu.pl | - |
dc.description.Email | Karolina H. Markiewicz: k.markiewicz@uwb.edu.pl | - |
dc.description.Affiliation | Pawel Misiak - Faculty of Chemistry, University of Bialystok, Bialystok, Poland | pl |
dc.description.Affiliation | Katarzyna Niemirowicz-Laskowska - Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Poland | pl |
dc.description.Affiliation | Karolina H. Markiewicz - Faculty of Chemistry, University of Bialystok, Bialystok, Poland | pl |
dc.description.Affiliation | Iwona Misztalewska-Turkowicz - Faculty of Chemistry, University of Bialystok, Bialystok, Poland | pl |
dc.description.Affiliation | Przemysław Wielgat - Department of Clinical Pharmacology, Medical University of Bialystok, Bialystok, Poland; | pl |
dc.description.Affiliation | Izabela Kurowska - Faculty of Chemistry, University of Bialystok, Bialystok, Poland; Doctoral School of Exact and Natural Sciences, University of Bialystok, Bialystok, Poland; | pl |
dc.description.Affiliation | Gabriela Siemiaszko - Faculty of Chemistry, University of Bialystok, Bialystok, Poland | pl |
dc.description.Affiliation | Mathias Destarac - 5IMRCP, CNRS UMR 5623, Université de Toulouse, Toulouse, France | pl |
dc.description.Affiliation | Halina Car - Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Poland | pl |
dc.description.Affiliation | Agnieszka Z. Wilczewska - Faculty of Chemistry, University of Bialystok, Bialystok, Poland | pl |
dc.description.references | Kalaydina R-V, Bajwa K, Qorri B, DeCarlo A, Szewczuk MR. Recent advances in “smart” delivery systems for extended drug release in cancer therapy. Int J Nanomedicine. 2018;13:4727–4745. doi:10.2147/IJN.S168053 | pl |
dc.description.references | Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics. 2016;6(9):1306–1323. doi:10.7150/thno.14858 | pl |
dc.description.references | Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64 (5):1020–1037. doi:10.1016/s1734-1140(12)70901-5 | pl |
dc.description.references | Zhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine. 2018;13:2921–2942. doi:10.2147/IJN.S158696 | pl |
dc.description.references | Yamada Y, Itoh Y, Aoki S, et al. Preliminary results of M-VAC chemotherapy combined with mild hyperthermia, a new therapeutic strategy for advanced or metastatic transitional cell carcinoma of the urothelium. Cancer Chemother Pharmacol. 2009;64(6):1079–1083. doi:10.1007/s00280-009-0964-2 | pl |
dc.description.references | Dieing A, Ahlers O, Hildebrandt B, et al. The effect of induced hyperthermia on the immune system. Prog Brain Res. 2007;162:137–152. doi:10.1016/S0079-6123(06)62008-6 | pl |
dc.description.references | Chee CK, Rimmer S, Soutar I, Swanson L. Manipulating the thermoresponsive behavior of poly(N-isopropylacrylamide). In: McCormick CL, editor. Stimuli-Responsive Water Soluble and Amphiphilic Polymers. Vol. 780. ACS Symposium Series, American Chemical Society; 2000:223–237. doi:10.1021/bk-2001-0780.ch013 | pl |
dc.description.references | Zhang R, Qin X, Kong F, Chen P, Pan G. Improving cellular uptake of therapeutic entities through interaction with components of cell membrane. Drug Deliv. 2019;26(1):328–342. doi:10.1080/ 10717544.2019.1582730 | pl |
dc.description.references | Stewart MP, Langer R, Jensen KF. Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem Rev. 2018;118(16):7409–7531. doi:10.1021/acs.chemrev.7b00678 | pl |
dc.description.references | Albuquerque H, Santos C, Silva A. Cholesterol-based compounds: recent advances in synthesis and applications. Molecules. 2018;24 (1):116. doi:10.3390/molecules24010116 | pl |
dc.description.references | Morzycki JW. Recent advances in cholesterol chemistry. Steroids. 2014; 83:62–79. doi:10.1016/j.steroids.2014.02.001 | pl |
dc.description.references | Zhou Y, Briand V, Sharma N, Ahn S, Kasi R. Polymers comprising cholesterol: synthesis, self-assembly, and applications. Materials. 2009;2(2):636–660. doi:10.3390/ma2020636 | pl |
dc.description.references | Tan S, Han C, Wang H, et al. Preparation and characterization of thermo-sensitive mixed micelles and in vitro drug release. Acta Polym Sin. 2011;11(11):1237–1243. doi:10.3724/SP.J.1105.2011.10301 | pl |
dc.description.references | Gao M, Yang Y, Bergfel A, Huang L, Zheng L, Bowden TM. Self- assembly of cholesterol end-capped polymer micelles for controlled drug delivery. J Nanobiotechnology. 2020;18(1):13. doi:10.1186/ s12951-020-0575-y | pl |
dc.description.references | Liu J, Setijadi E, Liu Y, Whittaker MR, Boyer C, Davis TP. PEGylated gold nanoparticles functionalized with β-cyclodextrin inclusion complexes: towards metal nanoparticle - polymer - carbohydrate cluster biohybrid materials. Aust J Chem. 2010;63(8):1245. doi:10.1071/CH10091 | pl |
dc.description.references | Zhou Y, Kasi RM. Synthesis and characterization of polycholesteryl methacrylate-polyhydroxyethyl methyacrylate block copolymers. J Polym Sci Part Polym Chem. 2008;46(20):6801–6809. doi:10.1002/pola.22988 | pl |
dc.description.references | Liu XM, Yang YY, Leong KW. Thermally responsive polymeric micellar nanoparticles self-assembled from cholesteryl end-capped random poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide): synthesis, temperature-sensitivity, and morphologies. J Colloid Interface Sci. 2003;266(2):295–303. doi:10.1016/S0021-9797(03)00691-X | pl |
dc.description.references | Liu XM, Pramoda KP, Yang YY, Chow SY, He C. Cholesteryl- grafted functional amphiphilic poly(N-isopropylacrylamide-co -N-hydroxylmethylacrylamide): synthesis, temperature-sensitivity, self-assembly and encapsulation of a hydrophobic agent. Biomaterials. 2004;25(13):2619–2628. doi:10.1016/j.biomaterials. 2003.09.028 | pl |
dc.description.references | Despax L, Fitremann J, Destarac M, Harrisson S. Low concentration thermoresponsive hydrogels from readily accessible triblock copolymers. Polym Chem. 2016;7(20):3375–3377. doi:10.1039/ C6PY00499G | pl |
dc.description.references | Wang YM, Zheng SX, Chang HI, Tsai HY, Liang M. Microwave- assisted synthesis of thermo- and pH-responsive antitumor drug carrier through reversible addition-fragmentation chain transfer polymerization. Express Polym Lett. 2017;11(4):293–307. doi:10.31 44/expresspolymlett.2017.29 | pl |
dc.description.references | Wang H, Li Z, Lu S, et al. Nano micelles of cellulose-graft-poly (l-lactic acid) anchored with epithelial cell adhesion antibody for enhanced drug loading and anti-tumor effect. Mater Today Commun. 2020;22:100764. doi:10.1016/j.mtcomm.2019.100764 | pl |
dc.description.references | Cammas S, Suzuki K, Sone C, Sakurai Y, Kataoka K, Okano T. Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J Control Release. 1997;48 (2–3):157–164. doi:10.1016/S0168-3659(97)00040-0 | pl |
dc.description.references | Glaria A, Beija M, Bordes R, Destarac M, Marty J-D. Understanding the role of ω-end groups and molecular weight in the interaction of PNIPAM with gold surfaces. Chem Mater. 2013;25(9):1868–1876. doi:10.1021/cm400480p | pl |
dc.description.references | Patton DL, Mullings M, Fulghum T, Advincula RC. A facile synthesis route to thiol-functionalized α,ω-telechelic polymers via reversible addition fragmentation chain transfer polymerization. Macromolecules. 2005;38(20):8597–8602. doi:10.1021/ ma051035s | pl |
dc.description.references | Lima V, Jiang X, Brokken-Zijp J, Schoenmakers PJ, Klumperman B, Van Der Linde R. Synthesis and characterization of telechelic polymethacrylates via RAFT polymerization. J Polym Sci Part Polym Chem. 2005;43(5):959–973. doi:10.1002/pola.20558 | pl |
dc.description.references | Min Y, Jun L, Hongfei H. Radiation preparation of the water-soluble, temperature sensitive polymers in organic solvents. Radiat Phys Chem. 1995;46(4–6):855–858. doi:10.1016/0969- 806X(95)00277-5 | pl |
dc.description.references | Sugihara Y, O’Connor P, Zetterlund PB, Aldabbagh F. Chain transfer to solvent in the radical polymerization of N-isopropylacrylamide. J Polym Sci Part Polym Chem. 2011;49(8):1856–1864. doi:10.1002/ pola.24612 | pl |
dc.description.references | Mikhlin Y, Vorobyev S, Saikova S, et al. Preparation and characterization of colloidal copper xanthate nanoparticles. New J Chem. 2016;40(4):3059–3065. doi:10.1039/C6NJ00098C | pl |
dc.description.references | Biswas CS, Patel VK, Vishwakarma NK, et al. Effects of tacticity and molecular weight of poly(N-isopropylacrylamide) on its glass transition temperature. Macromolecules. 2011;44(14):5822–5824. doi:10.1021/ma200735k | pl |
dc.description.references | Lu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res. 2018;11(10):4985–4998. doi:10.1007/ s12274-018-2152-3 | pl |
dc.description.references | Furyk S, Zhang Y, Ortiz-Acosta D, Cremer PS, Bergbreiter DE. Effects of end group polarity and molecular weight on the lower critical solution temperature of poly(N-isopropylacrylamide). J Polym Sci Part Polym Chem. 2006;44(4):1492–1501. doi:10.1002/ pola.21256 | pl |
dc.description.references | Schild HG. Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci. 1992;17(2):163–249. doi:10.1016/ 0079-6700(92)90023-R | pl |
dc.description.references | Okada Y, Tanaka F. Cooperative hydration, chain collapse, and flat LCST behavior in aqueous poly(N-isopropylacrylamide) solutions. Macromolecules. 2005;38(10):4465–4471. doi:10.1021/ma0502497 | pl |
dc.description.references | Chung JE, Yokoyama M, Aoyagi T, Sakurai Y, Okano T. Effect of molecular architecture of hydrophobically modified poly (N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J Control Release. 1998;53(1–3):119–130. doi:10.1016/S0168-3659(97)00244-7 | pl |
dc.description.references | Qiu X, Koga T, Tanaka F, Winnik FM. New insights into the effects of molecular weight and end group on the temperature-induced phase transition of poly(N-isopropylacrylamide) in water. Sci China Chem. 2013;56(1):56–64. doi:10.1007/s11426-012-4781-9 | pl |
dc.description.references | Pamies R, Zhu K, Kjøniksen A-L, Nyström B. Thermal response of low molecular weight poly-(N-isopropylacrylamide) polymers in aqueous solution. Polym Bull. 2009;62(4):487–502. doi:10.1007/s00289- 008-0029-4 | pl |
dc.description.references | Xia Y, Burke NAD, Stöver HDH. End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules. 2006;39 (6):2275–2283. doi:10.1021/ma0519617 | pl |
dc.description.references | Narumi A, Fuchise K, Kakuchi R, et al. A versatile method for adjusting thermoresponsivity: synthesis and ‘Click’ reaction of an azido end- functionalized poly(N-isopropylacrylamide). Macromol Rapid Commun. 2008;29(12–13):1126–1133. doi:10.1002/marc.200800055 | pl |
dc.description.references | Li X, ShamsiJazeyi H, Pesek SL, Agrawal A, Hammouda B, Verduzco R. Thermoresponsive PNIPAAM bottlebrush polymers with tailored side-chain length and end-group structure. Soft Matter. 2014;10(12):2008. doi:10.1039/c3sm52614c | pl |
dc.description.references | Weber M, Steinle H, Golombek S, et al. Blood-contacting biomaterials. Front Bioeng Biotechnol. 2018;6:99. doi:10.3389/ fbioe.2018.00099 | pl |
dc.description.references | Totea G, Ionita D, Demetrescu I, Mitache M. In vitro hemocompatibility and corrosion behavior of new Zr-binary alloys in whole human blood. Open Chem. 2014;12:(796–803):796. doi:10.2478/ s11532-014-0535-1 | pl |
dc.description.references | Bosma I, Reijneveld JC, Douw L, et al. Health-related quality of life of long-term high-grade glioma survivors. Neuro-Oncol. 2009;11 (1):51–58. doi:10.1215/15228517-2008-049 | pl |
dc.description.references | Batash R, Asna N, Schaffer P, Francis N, Schaffer M. Glioblastoma multiforme, diagnosis and treatment; recent literature review. Curr Med Chem. 2017;24(27). doi:10.2174/0929867324666170516123206 | pl |
dc.description.references | Qazi MA, Vora P, Venugopal C, et al. Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol. 2017;28(7):1448–1456. doi:10.1093/annonc/mdx169 | pl |
dc.description.references | Chan FK-M, Moriwaki K, De Rosa MJ. Detection of necrosis by release of lactate dehydrogenase activity. In: Snow AL, Lenardo MJ, editors. Immune Homeostasis. Humana Press; 2013:65–70. doi:10.1007/978-1-62703-290-2_7 | pl |
dc.description.references | Rivel T, Ramseyer C, Yesylevskyy S. The asymmetry of plasma membranes and their cholesterol content influence the uptake of cisplatin. Sci Rep. 2019;9(1):5627. doi:10.1038/s41598-019-41903-w | pl |
dc.description.references | Zalba S, Ten Hagen TLM. Cell membrane modulation as adjuvant in cancer therapy. Cancer Treat Rev. 2017;52:48–57. doi:10.1016/j. ctrv.2016.10.008 | pl |
dc.description.references | Yokoyama S. Release of cellular cholesterol: molecular mechanism for cholesterol homeostasis in cells and in the body. Biochim Biophys Acta. 2000;1529(1–3):231–244. doi:10.1016/S1388-1981(00)00152- 9 | pl |
dc.description.references | Mason RP. Differential effect of cholesterol on membrane interaction of charged versus uncharged 1,4-dihydropyridine calcium channel antagonists: a biophysical analysis. Cardiovasc Drug Ther. 1995;9 (S1):45–54. doi:10.1007/BF00878572 | pl |
dc.description.references | Nicolson GL. Cell membrane fluid–mosaic structure and cancer metastasis. Cancer Res. 2015;75(7):1169–1176. doi:10.1158/0008- 5472.CAN-14-3216 | pl |
dc.description.references | Wang HY, Hua X-W, Jia HR, et al. Enhanced cell membrane enrichment and subsequent cellular internalization of quantum dots via cell surface engineering: illuminating plasma membranes with quantum dots. J Mater Chem B. 2016;4(5):834–843. doi:10.1039/ C5TB02183A | pl |
dc.description.references | Qu C, Ma J, Zhang Y, et al. Estrogen receptor variant ER-Α36 promotes tamoxifen agonist activity in glioblastoma cells. Cancer Sci. 2019;110(1):221–234. doi:10.1111/cas.13868 | pl |
dc.description.references | Markiewicz M, Znoyko S, Stawski L, Ghatnekar A, Gilkeson G, Trojanowska M. A role for estrogen receptor-α and estrogen receptor-β in collagen biosynthesis in mouse skin. J Invest Dermatol. 2013;133(1):120–127. doi:10.1038/jid.2012.264 | pl |
dc.description.references | Juncal LC, Tobón YA, Piro OE, Della Védova CO, Romano RM. Structural, spectroscopic and theoretical studies on dixanthogens: (ROC(S)S)2, with R = n-propyl and isopropyl. New J Chem. 2014;38(8):3708–3716. doi:10.1039/C4NJ00708E | pl |
dc.description.volume | 15 | pl |
dc.description.firstpage | 7263 | pl |
dc.description.lastpage | 7278 | pl |
dc.identifier.citation2 | International Journal of Nanomedicine | pl |
dc.identifier.orcid | 0000-0002-6882-3519 | - |
dc.identifier.orcid | 0000-0002-3311-7147 | - |
dc.identifier.orcid | 0000-0002-4857-0489 | - |
dc.identifier.orcid | 0000-0001-6191-6053 | - |
Występuje w kolekcji(ach): | Artykuły naukowe (WChem) |
Pliki w tej pozycji:
Plik | Opis | Rozmiar | Format | |
---|---|---|---|---|
P_Misiak_K_Niemirowicz_Laskowska_KH_Markiewicz_at_al_Evaluation_of_cytotoxic_effect_of_cholesterol.pdf | 12,06 MB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL