REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/16603
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorMisiak, Paweł-
dc.contributor.authorNiemirowicz-Laskowska, Katarzyna-
dc.contributor.authorMarkiewicz, Karolina H.-
dc.contributor.authorMisztalewska-Turkowicz, Iwona-
dc.contributor.authorWielgat, Przemysław-
dc.contributor.authorKurowska, Izabela-
dc.contributor.authorSiemaszko, Gabriela-
dc.contributor.authorDestarac, Mathias-
dc.contributor.authorCar, Halina-
dc.contributor.authorWilczewska, Agnieszka Z.-
dc.date.accessioned2024-06-04T09:31:54Z-
dc.date.available2024-06-04T09:31:54Z-
dc.date.issued2020-
dc.identifier.citationInternational Journal of Nanomedicine, Vol. 15, 2020, p. 7263-7278pl
dc.identifier.issn1176-9114-
dc.identifier.urihttp://hdl.handle.net/11320/16603-
dc.description.abstractPurpose: Efficient intracellular delivery of a therapeutic compound is an important feature of smart drug delivery systems (SDDS). Modification of a carrier structure with a cellpenetrating ligand, ie, cholesterol moiety, is a strategy to improve cellular uptake. Cholesterol end-capped poly(N-isopropylacrylamide)s offer a promising foundation for the design of efficient thermoresponsive drug delivery systems. Methods: A series of cholesterol end-capped poly(N-isopropylacrylamide)s (PNIPAAm) with number-average molar masses ranging from 3200 to 11000 g·mol–1 were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization from original xanthate-functionalized cholesterol and self-assembled into micelles. The physicochemical characteristics and cytotoxicity of cholesterol end-capped poly(N-isopropylacrylamide)s have been thoroughly investigated. Results: Phase transition temperature dependence on the molecular weight and hydrophilic/hydrophobic ratio in the polymers were observed in water. Biological test results showed that the obtained materials, both in disordered and micellar form, are non-hemolytic, highly compatible with fibroblasts, and toxic to glioblastoma cells. It was found that the polymer termini dictates the mode of action of the system. Conclusion: The cholesteryl moiety acts as a cell-penetrating agent, which enables disruption of the plasma membrane and in effect leads to the restriction of the tumor growth. Cholesterol end-capped PNIPAAm showing in vitro anticancer efficacy can be developed not only as drug carriers but also as components of combined/synergistic therapy.pl
dc.language.isoenpl
dc.publisherDove Medical Presspl
dc.rightsUznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectcholesterol-end capped poly(N-isopropylacrylamide)pl
dc.subjectcell-penetrating moleculespl
dc.subjectthermoresponsive polymer micellespl
dc.subjectdrug carrierspl
dc.titleEvaluation of Cytotoxic Effect of Cholesterol End-Capped Poly(N-Isopropylacrylamide)s on Selected Normal and Neoplastic Cellspl
dc.typeArticlepl
dc.rights.holder© 2020 Misiak et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).pl
dc.identifier.doi10.2147/ijn.s262582-
dc.description.EmailAgnieszka Z. Wilczewska: agawilcz@uwb.edu.pl-
dc.description.EmailKarolina H. Markiewicz: k.markiewicz@uwb.edu.pl-
dc.description.AffiliationPawel Misiak - Faculty of Chemistry, University of Bialystok, Bialystok, Polandpl
dc.description.AffiliationKatarzyna Niemirowicz-Laskowska - Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Polandpl
dc.description.AffiliationKarolina H. Markiewicz - Faculty of Chemistry, University of Bialystok, Bialystok, Polandpl
dc.description.AffiliationIwona Misztalewska-Turkowicz - Faculty of Chemistry, University of Bialystok, Bialystok, Polandpl
dc.description.AffiliationPrzemysław Wielgat - Department of Clinical Pharmacology, Medical University of Bialystok, Bialystok, Poland;pl
dc.description.AffiliationIzabela Kurowska - Faculty of Chemistry, University of Bialystok, Bialystok, Poland; Doctoral School of Exact and Natural Sciences, University of Bialystok, Bialystok, Poland;pl
dc.description.AffiliationGabriela Siemiaszko - Faculty of Chemistry, University of Bialystok, Bialystok, Polandpl
dc.description.AffiliationMathias Destarac - 5IMRCP, CNRS UMR 5623, Université de Toulouse, Toulouse, Francepl
dc.description.AffiliationHalina Car - Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Polandpl
dc.description.AffiliationAgnieszka Z. Wilczewska - Faculty of Chemistry, University of Bialystok, Bialystok, Polandpl
dc.description.referencesKalaydina R-V, Bajwa K, Qorri B, DeCarlo A, Szewczuk MR. Recent advances in “smart” delivery systems for extended drug release in cancer therapy. Int J Nanomedicine. 2018;13:4727–4745. doi:10.2147/IJN.S168053pl
dc.description.referencesLiu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics. 2016;6(9):1306–1323. doi:10.7150/thno.14858pl
dc.description.referencesWilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64 (5):1020–1037. doi:10.1016/s1734-1140(12)70901-5pl
dc.description.referencesZhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine. 2018;13:2921–2942. doi:10.2147/IJN.S158696pl
dc.description.referencesYamada Y, Itoh Y, Aoki S, et al. Preliminary results of M-VAC chemotherapy combined with mild hyperthermia, a new therapeutic strategy for advanced or metastatic transitional cell carcinoma of the urothelium. Cancer Chemother Pharmacol. 2009;64(6):1079–1083. doi:10.1007/s00280-009-0964-2pl
dc.description.referencesDieing A, Ahlers O, Hildebrandt B, et al. The effect of induced hyperthermia on the immune system. Prog Brain Res. 2007;162:137–152. doi:10.1016/S0079-6123(06)62008-6pl
dc.description.referencesChee CK, Rimmer S, Soutar I, Swanson L. Manipulating the thermoresponsive behavior of poly(N-isopropylacrylamide). In: McCormick CL, editor. Stimuli-Responsive Water Soluble and Amphiphilic Polymers. Vol. 780. ACS Symposium Series, American Chemical Society; 2000:223–237. doi:10.1021/bk-2001-0780.ch013pl
dc.description.referencesZhang R, Qin X, Kong F, Chen P, Pan G. Improving cellular uptake of therapeutic entities through interaction with components of cell membrane. Drug Deliv. 2019;26(1):328–342. doi:10.1080/ 10717544.2019.1582730pl
dc.description.referencesStewart MP, Langer R, Jensen KF. Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem Rev. 2018;118(16):7409–7531. doi:10.1021/acs.chemrev.7b00678pl
dc.description.referencesAlbuquerque H, Santos C, Silva A. Cholesterol-based compounds: recent advances in synthesis and applications. Molecules. 2018;24 (1):116. doi:10.3390/molecules24010116pl
dc.description.referencesMorzycki JW. Recent advances in cholesterol chemistry. Steroids. 2014; 83:62–79. doi:10.1016/j.steroids.2014.02.001pl
dc.description.referencesZhou Y, Briand V, Sharma N, Ahn S, Kasi R. Polymers comprising cholesterol: synthesis, self-assembly, and applications. Materials. 2009;2(2):636–660. doi:10.3390/ma2020636pl
dc.description.referencesTan S, Han C, Wang H, et al. Preparation and characterization of thermo-sensitive mixed micelles and in vitro drug release. Acta Polym Sin. 2011;11(11):1237–1243. doi:10.3724/SP.J.1105.2011.10301pl
dc.description.referencesGao M, Yang Y, Bergfel A, Huang L, Zheng L, Bowden TM. Self- assembly of cholesterol end-capped polymer micelles for controlled drug delivery. J Nanobiotechnology. 2020;18(1):13. doi:10.1186/ s12951-020-0575-ypl
dc.description.referencesLiu J, Setijadi E, Liu Y, Whittaker MR, Boyer C, Davis TP. PEGylated gold nanoparticles functionalized with β-cyclodextrin inclusion complexes: towards metal nanoparticle - polymer - carbohydrate cluster biohybrid materials. Aust J Chem. 2010;63(8):1245. doi:10.1071/CH10091pl
dc.description.referencesZhou Y, Kasi RM. Synthesis and characterization of polycholesteryl methacrylate-polyhydroxyethyl methyacrylate block copolymers. J Polym Sci Part Polym Chem. 2008;46(20):6801–6809. doi:10.1002/pola.22988pl
dc.description.referencesLiu XM, Yang YY, Leong KW. Thermally responsive polymeric micellar nanoparticles self-assembled from cholesteryl end-capped random poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide): synthesis, temperature-sensitivity, and morphologies. J Colloid Interface Sci. 2003;266(2):295–303. doi:10.1016/S0021-9797(03)00691-Xpl
dc.description.referencesLiu XM, Pramoda KP, Yang YY, Chow SY, He C. Cholesteryl- grafted functional amphiphilic poly(N-isopropylacrylamide-co -N-hydroxylmethylacrylamide): synthesis, temperature-sensitivity, self-assembly and encapsulation of a hydrophobic agent. Biomaterials. 2004;25(13):2619–2628. doi:10.1016/j.biomaterials. 2003.09.028pl
dc.description.referencesDespax L, Fitremann J, Destarac M, Harrisson S. Low concentration thermoresponsive hydrogels from readily accessible triblock copolymers. Polym Chem. 2016;7(20):3375–3377. doi:10.1039/ C6PY00499Gpl
dc.description.referencesWang YM, Zheng SX, Chang HI, Tsai HY, Liang M. Microwave- assisted synthesis of thermo- and pH-responsive antitumor drug carrier through reversible addition-fragmentation chain transfer polymerization. Express Polym Lett. 2017;11(4):293–307. doi:10.31 44/expresspolymlett.2017.29pl
dc.description.referencesWang H, Li Z, Lu S, et al. Nano micelles of cellulose-graft-poly (l-lactic acid) anchored with epithelial cell adhesion antibody for enhanced drug loading and anti-tumor effect. Mater Today Commun. 2020;22:100764. doi:10.1016/j.mtcomm.2019.100764pl
dc.description.referencesCammas S, Suzuki K, Sone C, Sakurai Y, Kataoka K, Okano T. Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J Control Release. 1997;48 (2–3):157–164. doi:10.1016/S0168-3659(97)00040-0pl
dc.description.referencesGlaria A, Beija M, Bordes R, Destarac M, Marty J-D. Understanding the role of ω-end groups and molecular weight in the interaction of PNIPAM with gold surfaces. Chem Mater. 2013;25(9):1868–1876. doi:10.1021/cm400480ppl
dc.description.referencesPatton DL, Mullings M, Fulghum T, Advincula RC. A facile synthesis route to thiol-functionalized α,ω-telechelic polymers via reversible addition fragmentation chain transfer polymerization. Macromolecules. 2005;38(20):8597–8602. doi:10.1021/ ma051035spl
dc.description.referencesLima V, Jiang X, Brokken-Zijp J, Schoenmakers PJ, Klumperman B, Van Der Linde R. Synthesis and characterization of telechelic polymethacrylates via RAFT polymerization. J Polym Sci Part Polym Chem. 2005;43(5):959–973. doi:10.1002/pola.20558pl
dc.description.referencesMin Y, Jun L, Hongfei H. Radiation preparation of the water-soluble, temperature sensitive polymers in organic solvents. Radiat Phys Chem. 1995;46(4–6):855–858. doi:10.1016/0969- 806X(95)00277-5pl
dc.description.referencesSugihara Y, O’Connor P, Zetterlund PB, Aldabbagh F. Chain transfer to solvent in the radical polymerization of N-isopropylacrylamide. J Polym Sci Part Polym Chem. 2011;49(8):1856–1864. doi:10.1002/ pola.24612pl
dc.description.referencesMikhlin Y, Vorobyev S, Saikova S, et al. Preparation and characterization of colloidal copper xanthate nanoparticles. New J Chem. 2016;40(4):3059–3065. doi:10.1039/C6NJ00098Cpl
dc.description.referencesBiswas CS, Patel VK, Vishwakarma NK, et al. Effects of tacticity and molecular weight of poly(N-isopropylacrylamide) on its glass transition temperature. Macromolecules. 2011;44(14):5822–5824. doi:10.1021/ma200735kpl
dc.description.referencesLu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res. 2018;11(10):4985–4998. doi:10.1007/ s12274-018-2152-3pl
dc.description.referencesFuryk S, Zhang Y, Ortiz-Acosta D, Cremer PS, Bergbreiter DE. Effects of end group polarity and molecular weight on the lower critical solution temperature of poly(N-isopropylacrylamide). J Polym Sci Part Polym Chem. 2006;44(4):1492–1501. doi:10.1002/ pola.21256pl
dc.description.referencesSchild HG. Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci. 1992;17(2):163–249. doi:10.1016/ 0079-6700(92)90023-Rpl
dc.description.referencesOkada Y, Tanaka F. Cooperative hydration, chain collapse, and flat LCST behavior in aqueous poly(N-isopropylacrylamide) solutions. Macromolecules. 2005;38(10):4465–4471. doi:10.1021/ma0502497pl
dc.description.referencesChung JE, Yokoyama M, Aoyagi T, Sakurai Y, Okano T. Effect of molecular architecture of hydrophobically modified poly (N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J Control Release. 1998;53(1–3):119–130. doi:10.1016/S0168-3659(97)00244-7pl
dc.description.referencesQiu X, Koga T, Tanaka F, Winnik FM. New insights into the effects of molecular weight and end group on the temperature-induced phase transition of poly(N-isopropylacrylamide) in water. Sci China Chem. 2013;56(1):56–64. doi:10.1007/s11426-012-4781-9pl
dc.description.referencesPamies R, Zhu K, Kjøniksen A-L, Nyström B. Thermal response of low molecular weight poly-(N-isopropylacrylamide) polymers in aqueous solution. Polym Bull. 2009;62(4):487–502. doi:10.1007/s00289- 008-0029-4pl
dc.description.referencesXia Y, Burke NAD, Stöver HDH. End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules. 2006;39 (6):2275–2283. doi:10.1021/ma0519617pl
dc.description.referencesNarumi A, Fuchise K, Kakuchi R, et al. A versatile method for adjusting thermoresponsivity: synthesis and ‘Click’ reaction of an azido end- functionalized poly(N-isopropylacrylamide). Macromol Rapid Commun. 2008;29(12–13):1126–1133. doi:10.1002/marc.200800055pl
dc.description.referencesLi X, ShamsiJazeyi H, Pesek SL, Agrawal A, Hammouda B, Verduzco R. Thermoresponsive PNIPAAM bottlebrush polymers with tailored side-chain length and end-group structure. Soft Matter. 2014;10(12):2008. doi:10.1039/c3sm52614cpl
dc.description.referencesWeber M, Steinle H, Golombek S, et al. Blood-contacting biomaterials. Front Bioeng Biotechnol. 2018;6:99. doi:10.3389/ fbioe.2018.00099pl
dc.description.referencesTotea G, Ionita D, Demetrescu I, Mitache M. In vitro hemocompatibility and corrosion behavior of new Zr-binary alloys in whole human blood. Open Chem. 2014;12:(796–803):796. doi:10.2478/ s11532-014-0535-1pl
dc.description.referencesBosma I, Reijneveld JC, Douw L, et al. Health-related quality of life of long-term high-grade glioma survivors. Neuro-Oncol. 2009;11 (1):51–58. doi:10.1215/15228517-2008-049pl
dc.description.referencesBatash R, Asna N, Schaffer P, Francis N, Schaffer M. Glioblastoma multiforme, diagnosis and treatment; recent literature review. Curr Med Chem. 2017;24(27). doi:10.2174/0929867324666170516123206pl
dc.description.referencesQazi MA, Vora P, Venugopal C, et al. Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol. 2017;28(7):1448–1456. doi:10.1093/annonc/mdx169pl
dc.description.referencesChan FK-M, Moriwaki K, De Rosa MJ. Detection of necrosis by release of lactate dehydrogenase activity. In: Snow AL, Lenardo MJ, editors. Immune Homeostasis. Humana Press; 2013:65–70. doi:10.1007/978-1-62703-290-2_7pl
dc.description.referencesRivel T, Ramseyer C, Yesylevskyy S. The asymmetry of plasma membranes and their cholesterol content influence the uptake of cisplatin. Sci Rep. 2019;9(1):5627. doi:10.1038/s41598-019-41903-wpl
dc.description.referencesZalba S, Ten Hagen TLM. Cell membrane modulation as adjuvant in cancer therapy. Cancer Treat Rev. 2017;52:48–57. doi:10.1016/j. ctrv.2016.10.008pl
dc.description.referencesYokoyama S. Release of cellular cholesterol: molecular mechanism for cholesterol homeostasis in cells and in the body. Biochim Biophys Acta. 2000;1529(1–3):231–244. doi:10.1016/S1388-1981(00)00152- 9pl
dc.description.referencesMason RP. Differential effect of cholesterol on membrane interaction of charged versus uncharged 1,4-dihydropyridine calcium channel antagonists: a biophysical analysis. Cardiovasc Drug Ther. 1995;9 (S1):45–54. doi:10.1007/BF00878572pl
dc.description.referencesNicolson GL. Cell membrane fluid–mosaic structure and cancer metastasis. Cancer Res. 2015;75(7):1169–1176. doi:10.1158/0008- 5472.CAN-14-3216pl
dc.description.referencesWang HY, Hua X-W, Jia HR, et al. Enhanced cell membrane enrichment and subsequent cellular internalization of quantum dots via cell surface engineering: illuminating plasma membranes with quantum dots. J Mater Chem B. 2016;4(5):834–843. doi:10.1039/ C5TB02183Apl
dc.description.referencesQu C, Ma J, Zhang Y, et al. Estrogen receptor variant ER-Α36 promotes tamoxifen agonist activity in glioblastoma cells. Cancer Sci. 2019;110(1):221–234. doi:10.1111/cas.13868pl
dc.description.referencesMarkiewicz M, Znoyko S, Stawski L, Ghatnekar A, Gilkeson G, Trojanowska M. A role for estrogen receptor-α and estrogen receptor-β in collagen biosynthesis in mouse skin. J Invest Dermatol. 2013;133(1):120–127. doi:10.1038/jid.2012.264pl
dc.description.referencesJuncal LC, Tobón YA, Piro OE, Della Védova CO, Romano RM. Structural, spectroscopic and theoretical studies on dixanthogens: (ROC(S)S)2, with R = n-propyl and isopropyl. New J Chem. 2014;38(8):3708–3716. doi:10.1039/C4NJ00708Epl
dc.description.volume15pl
dc.description.firstpage7263pl
dc.description.lastpage7278pl
dc.identifier.citation2International Journal of Nanomedicinepl
dc.identifier.orcid0000-0002-6882-3519-
dc.identifier.orcid0000-0002-3311-7147-
dc.identifier.orcid0000-0002-4857-0489-
dc.identifier.orcid0000-0001-6191-6053-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons