REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/16601
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorŚwiderski, Grzegorz-
dc.contributor.authorWilczewska, Agnieszka Z.-
dc.contributor.authorŚwisłocka, Renata-
dc.contributor.authorKalinowska, Monika-
dc.contributor.authorLewandowski, Włodzimierz-
dc.date.accessioned2024-06-03T11:47:55Z-
dc.date.available2024-06-03T11:47:55Z-
dc.date.issued2018-
dc.identifier.citationJournal of Thermal Analysis and Calorimetry, Volume 134 (2018), p. 513–525pl
dc.identifier.issn1388-6150-
dc.identifier.urihttp://hdl.handle.net/11320/16601-
dc.description.abstractIn this work, the spectroscopic (IR, Raman, UV–Vis) and thermal properties of 3d metal complexes with 4-imidazolecarboxylic acid were studied in order to determine the effect of 3d metals [i.e., Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II)] on the electronic structure and physicochemical properties of the ligand. The spectroscopic studies showed that the 3d-transition metals stabilize the electronic system of 4-imidazolecarboxylic acid. Similar results were obtained previously for benzoic and pyridinecarboxylic acids. The complexes synthesized in an aqueous medium were hydrated, as determined by the elemental and thermogravimetric analysis. The complexes of 4-imidazolecarboxylic acid have the general formula: M(C₃N₂H₃COO)ᵪ . nH₂O where M = Mn, Fe, Co, Ni, Cu, Zn, x = 3 for iron complex, x = 2 for other complex and n = 0–3. Thermogravimetric analysis conducted in oxygen atmosphere showed that the complexes decompose to metal oxides. During the thermal decomposition process carbon monoxide, carbon dioxide and imidazole ring degradation products are released.pl
dc.description.sponsorshipStudies have been carried out in the framework of the work no. S/WBiIS´/3/2017 and financed from the funds for science Ministry of Science and Higher Education.pl
dc.language.isoenpl
dc.publisherSpringerpl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject4-Imidazolecarboxylic acidpl
dc.subject3d-metal complexespl
dc.subjectThermal analysispl
dc.subject4-Imidazolecarboxylatespl
dc.subjectIR and Raman spectrapl
dc.titleSpectroscopic (IR, Raman, UV–Vis) study and thermal analysis of 3d-metal complexes with 4-imidazolecarboxylic acidpl
dc.typeArticlepl
dc.rights.holderThis article is distributed under the terms of the Creative Commons Attribution 4.0 International Licensepl
dc.identifier.doi10.1007/s10973-018-7524-0-
dc.description.EmailGrzegorz Świderski: g.swiderski@pb.edu.plpl
dc.description.AffiliationGrzegorz Świderski - Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Polandpl
dc.description.AffiliationAgnieszka Zofia Wilczewska - Institute of Chemistry, University of Bialystok, Ciolkowskiego Street 1K, 15-245 Białystok, Polandpl
dc.description.AffiliationRenata Świsłocka - Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Polandpl
dc.description.AffiliationMonika Kalinowska - Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Polandpl
dc.description.AffiliationWłodzimierz Lewandowski - Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Polandpl
dc.description.referencesShingalapur RV, Hosamani KM, Keri RS. Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles. Eur J Med Chem. 2009;44:4244–8.pl
dc.description.referencesRefaat HM, Europ J. Synthesis and anticancer activity of some novel 2-substituted benzimidazole derivatives. Med Chem. 2010;45:2949–56.pl
dc.description.referencesRoman G, Riley JG, Vlahakis JZ, Kinobe RT, Brien JF, Nakatsu K, Szarek WA. Heme oxygenase inhibition by 2-oxy-substituted 1-(1H-imidazol-1-yl)-4-phenylbutanes: effect of halogen substitution in the phenyl ring. Bioorg Med Chem. 2007;15:3225–34.pl
dc.description.referencesVenkatesan AM, Agarwal A, Abe T, Ushirogochi HO, Santos D, Li Z, Francisco G, Lin YI, Peterson PJ, Yang Y, Weiss WJ, Shales DM, Mansour TS. 5, 5, 6-Fused tricycles bearing imidazole and pyrazole 6-methylidene penems as broad-spectrum inhibitors of b-lactamases. Bioorg Med Chem. 2008;16:1890–902.pl
dc.description.referencesShalini K, Sharma PK, Kumar N. Imidazole and its biological activities: a review. Der Chem Sin. 2010;1(3):36–47.pl
dc.description.referencesSalerno L, Pittala V, Romeo G, Modica MN, Marazzo A, Siracusa MA, Sorrenti V, Di Giacomo C, Vanella L, Parayath NN, Greish K. Novel imidazole derivatives as heme oxygenase-1 (HO-1) and heme oxygenase-2 (HO-2) inhibitors and their cytotoxic activity in human-derived cancer cell lines. Eur J Med Chem. 2015;96:162–72.pl
dc.description.referencesBhatnagar A, Sharma PK, Kumar N. A review on ‘‘Imidazoles’’: Their chemistry and pharmacological potentials. Int J Pharm Tech Res. 2011;3(1):268–82.pl
dc.description.referencesPozharski AF, Soldatenkov AT, Katritzky AR. Heterocycles in life and society: an introduction to heterocyclic chemistry, biochemistry and applications. Chichester: Wiley; 2011.pl
dc.description.referencesPilling ED, Bromleychallenor KAC, Walker CH, Jepson PC. Mechanism of synergism between the pyrethroid insecticide kcyhalothrin and the imidazole fungicide prochloraz, in the honeybee (Apis mellifera L.). Pestic Biochem Physiol. 1995;5(1):1–11.pl
dc.description.referencesLi LF, Wang H, Zhang J, Ma C, Li YY, Wang L, Liang SK, Jin HT, Liu SJ, Zhu MC, Gao EJ. Syntheses, characterization, interaction with DNA, cytotoxic and apoptosis of two novel complexes of Zn(II) and Mn(II) with 2-methyl-1H-4,5-imidazoledicarboxylic acid. Eur J Med Chem. 2015;92:295–301.pl
dc.description.referencesMa C, Liang SK, Zhao FC, Meng Y, Li YY, Zhu MC, Gao EJ. Cadmium (II) complex with 2-methyl-1H-4,5-imidazoledicarboxylic acid ligand: synthesis, characterization, and biological activity. J Coord Chem. 2014;67(21):3551–64.pl
dc.description.referencesGalvan-Tejada N, Bernes S, Castillo-Blum SE, No¨th H, Vicente R, Barba-Behrens N. Supramolecular structures of metronidazole and its copper(II), cobalt(II) and zinc(II) coordination compounds. J Inorg Biochem. 2002;91:339–48.pl
dc.description.referencesBoskovic C, Folting K, Christou G. Tetranuclear manganese carboxylate clusters with imidazole-carboxylate chelating ligands. X-ray crystal structure of the 4-imidazoleacetate complex. Polyhedron. 2000;19:2111–8.pl
dc.description.referencesMontes-Ayala J, Escartín-Guzmán C, Castillo-Blum SE, Rodríguez-Hernández EO, Bernès S, Rosales-Hoz MJ, Barba-Behrens N. Crystal structure, solid state and solution characterisation of copper(II) coordination compounds of ethyl 5-methyl-4-imidazolecarboxylate (emizco). J Inorg Biochem. 2005;99(8):1676–84.pl
dc.description.referencesBarrera-Guzmán VA, Ramírez-Trejo R, Rodríguez-Hernández EO, Barba-Behrens N. 2D and 3D supramolecular structures of trans-and cis-octahedral coordination compounds of ethyl-5-methyl-4-imidazolecarboxylate with transition metal ions. J Mex Chem Soc. 2012;56(1):51–7.pl
dc.description.referencesShimizu E, Kondo M, Fuwa Y, Sarker RP, Miyazawa M, Ueno M, Naito T, Maeda K, Uchida F. Synthesis and crystal structures of metal complexes with 4, 5-imidazole-dicarboxylate chelates: self-assembled structures via NHO C intermolecular hydrogen bonds. Inorg Chem Commun. 2004;7(11):1191–4.pl
dc.description.referencesPremkumar T, Govindarajan S, Pan WP, Xie R. Preparation and thermal behaviour of transition metal complexes of 4, 5-imidazoledicarboxylic acid. J Therm Anal Calorim. 2003;74(1):325–33.pl
dc.description.referencesLi ZY, Zhang ZM, Dai JW, Huang HZ, Li XX, Yue ST, Liu YL. Three novel lanthanide complexes with imidazole-4, 5-dicarboxylate ligand: hydrothermal syntheses, structural characterization, and properties. J Mol Struct. 2010;963(1):50–6.pl
dc.description.referencesŚwiderski G, Kalinowska M, Wojtulewski S, Lewandowski W. Experimental (FT-IR, FT-Raman, 1H NMR) and theoretical study of magnesium calcium, strontium, and barium picolinates. Spectrochim Acta Part A. 2006;64:24–33.pl
dc.description.referencesŚwiderski G, Kalinowska M, Malejko J, Lewandowski W. Spectroscopic (IR, Raman, UV and fluorescence) study on lanthanide complexes of picolinic acid. Vib Spectrosc. 2016;87:81–7.pl
dc.description.referencesJabłońska-Wawrzycka A, Zienkiewicz M, Barszcz B, Rogala P. Thermoanalytical study of selected transition bivalent metal complexes with 5-carbaldehyde-4-methylimidazole. J Therm Anal Calorim. 2012;109(2):735–43.pl
dc.description.referencesŚwiderski G, Kalinowska M, Rusinek I, Samsonowicz M, Rzączyńska Z, Lewandowski W. Spectroscopic (IR, Raman) and thermogravimetric studies of 3d-metal cinchomeronates and dinicotinates. J Therm Anal Calorim. 2016;126(3):1521–32.pl
dc.description.referencesŚwiderski G, Lewandowska H, Świsłocka R, Wojtulewski S, Siergiejczyk L, Wilczewska A. Thermal, spectroscopic (IR, Raman, NMR) and theoretical (DFT) studies of alkali metal complexes with pyrazinecarboxylate and 2, 3-pyrazinedicarboxylate ligands. J Therm Anal Calorim. 2016;126(1):205–24.pl
dc.description.referencesFrisch M, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA. Gaussian 09, revision A, vol. 02. Wallingford: Gaussian Inc; 2009. p. 227–38.pl
dc.description.referencesPolat T, Yurdakul S. DFT, FT-IR and FT-Raman investigations of 1-methyl-2-imidazolecarboxaldehyde. J Mol Struct. 1053;2013:27–37.pl
dc.description.referencesVan Bael MK, Smets J, Schoone K, Houben L, McCarthy W, Adamowicz L, Nowak MJ, Maes G. Matrix-isolation FTIR studies and theoretical calculations of hydrogen-bonded complexes of imidazole. A comparison between experimental results and different calculation methods. J Phys Chem A. 1997;10(13):2397–413.pl
dc.description.referencesRode JE, Dobrowolski JC, Jamro´z MH, Borowiak MA. Theoretical IR, Raman and NMR spectra of 1, 2-and 1, 3-dimethylenecyclobutane. Vib Spectrosc. 2001;25:133–49.pl
dc.description.referencesNakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 1986.pl
dc.description.referencesDeacon GB, Philips RJ. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33(3):227–50.pl
dc.description.referencesLewandowski W, Kalinowska M, Lewandowska H. The influence of metals on the electronic system of biologically important ligands. Spectroscopic study of benzoates, salicylates, nicotinates and isoorotates. Review. J Inorg Biochem. 2005;99:1407–23.pl
dc.description.referencesLewandowski W, Fuks L, Kalinowska M, Koczon´ P. The influence of selected metals on the electronic system of biologically important ligands. Spectrochim Acta A. 2003;59(14):3411–20.pl
dc.description.referencesLewandowski W, Baran´ska H. Comparison of the influence of silver, iron (III) and chromium (III) on the aromatic system of benzoic and salicylic acids in hydrated and anhydrous complexes. Vib Spectrosc. 1991;2:211–20.pl
dc.description.referencesLewandowski W, Baran´ska H, Mos´cibroda P. Vibrational study of nicotinic acid complexes with different central ions. J Raman Spectrosc. 1993;24:819–24.pl
dc.identifier.eissn1588-2926-
dc.description.volume134pl
dc.description.firstpage513pl
dc.description.lastpage525pl
dc.identifier.citation2Journal of Thermal Analysis and Calorimetrypl
dc.identifier.orcid0000-0003-4442-6348-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons