REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/16598
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorNiemirowicz-Laskowska, Katarzyna-
dc.contributor.authorMystkowska, Joanna-
dc.contributor.authorŁysik, Dawid-
dc.contributor.authorChmielewska, Sylwia-
dc.contributor.authorTokajuk, Grażyna-
dc.contributor.authorMisztalewska-Turkowicz, Iwona-
dc.contributor.authorWilczewska, Agnieszka Z.-
dc.contributor.authorBucki, Robert-
dc.date.accessioned2024-06-03T09:48:58Z-
dc.date.available2024-06-03T09:48:58Z-
dc.date.issued2020-
dc.identifier.citationInternational Journal of Molecular Sciences, Vol. 21, Issue 6 (2020), p. 1-17pl
dc.identifier.issn1422-0067-
dc.identifier.urihttp://hdl.handle.net/11320/16598-
dc.description.abstractSaliva plays a crucial role in oral cavity. In addition to its buffering and moisturizing properties, saliva fulfills many biofunctional requirements, including antibacterial activity that is essential to assure proper oral microbiota growth. Due to numerous extra- and intra-systemic factors, there are many disorders of its secretion, leading to oral dryness. Saliva substitutes used in such situations must meet many demands. This study was design to evaluate the effect of core-shell magnetic nanoparticles (MNPs) adding (gold-coated and aminosilane-coated nanoparticles NPs) on antimicrobial (microorganism adhesion, biofilm formation), rheological (viscosity, viscoelasticity) and physicochemical (pH, surface tension, conductivity) properties of three commercially available saliva formulations. Upon the addition of NPs (20 µg/mL), antibacterial activity of artificial saliva was found to increase against tested microorganisms by 20% to 50%. NPs, especially gold-coated ones, decrease the adhesion of Gram-positive and fungal cells by 65% and Gram-negative bacteria cells by 45%. Moreover, the addition of NPs strengthened the antimicrobial properties of tested artificial saliva, without influencing their rheological and physicochemical properties, which stay within the range characterizing the natural saliva collected from healthy subjects.pl
dc.description.sponsorshipThe study was sponsored by a grant from the Polpharma Scientific Foundation (Katarzyna Niemirowicz-Laskowska).pl
dc.language.isoenpl
dc.publisherMDPIpl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectsalivapl
dc.subjectmagnetic nanoparticlespl
dc.subjectantimicrobialpl
dc.subjectbiofilmpl
dc.subjectnanomedicinepl
dc.titleAntimicrobial and Physicochemical Properties of Artificial Saliva Formulations Supplemented with Core-Shell Magnetic Nanoparticlespl
dc.typeArticlepl
dc.rights.holder© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).pl
dc.identifier.doi10.3390/ijms21061979-
dc.description.EmailKatarzyna Niemirowicz-Laskowska: katia146@wp.plpl
dc.description.EmailJoanna Mystkowska: j.mystkowska@pb.edu.plpl
dc.description.EmailDawid Łysik: d.lysik@pb.edu.plpl
dc.description.EmailSylwia Chmielewska: sylwia.chmielewska@umb.edu.plpl
dc.description.EmailGrażyna Tokajuk: grazyna.t1@gmail.compl
dc.description.EmailIwona Misztalewska-Turkowicz: i.misztalewska@uwb.edu.plpl
dc.description.EmailAgnieszka Z. Wilczewska: agawilczuwb@gmail.compl
dc.description.EmailRobert Bucki: buckirobert@gmail.compl
dc.description.AffiliationKatarzyna Niemirowicz-Laskowska - Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystokpl
dc.description.AffiliationJoanna Mystkowska - Institute of Biomedical Engineering, Bialystok University of Technologypl
dc.description.AffiliationDawid Łysik - Institute of Biomedical Engineering, Bialystok University of Technologypl
dc.description.AffiliationSylwia Chmielewska - Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystokpl
dc.description.AffiliationGrażyna Tokajuk - Department of Integrated Dentistry, Medical University of Bialystokpl
dc.description.AffiliationIwona Misztalewska-Turkowicz - Faculty of Chemistry, University of Białystokpl
dc.description.AffiliationAgnieszka Z. Wilczewska - Faculty of Chemistry, University of Białystokpl
dc.description.AffiliationRobert Bucki - Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok; Department of Microbiology and Immunology, The Faculty of Medicine and Health Sciences of the Jan Kochanowski University in Kielcepl
dc.description.referencesHan, P.; Suarez-Durall, P.; Mulligan, R. Dry Mouth: A Critical Topic for Older Adult Patients. J. Prosthodont. Res. 2015, 6–19.pl
dc.description.referencesEnoki, K.; Matsuda, K.I.; Ikebe, K.; Murai, S.; Yoshida, M.; Maeda, Y.; Thomson, W.M. Influence of Xerostomia on Oral Health-Related Quality of Life in the Elderly: A 5-Year Longitudinal Study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2014, 117, 716–721.pl
dc.description.referencesGrundmann, O.; Mitchell, G.C.; Limesand, K.H. Sensitivity of Salivary Glands to Radiation: From Animal Models to Therapies. J. Dent. Res. 2009.pl
dc.description.referencesTrotti, A.; Bellm, L.A.; Epstein, J.B.; Frame, D.; Fuchs, H.J.; Gwede, C.K.; Komaroff, E.; Nalysnyk, L.; Zilberberg, M.D. Mucositis Incidence, Severity and Associated Outcomes in Patients with Head and Neck Cancer Receiving Radiotherapy with or without Chemotherapy: A Systematic Literature Review. Radiother. Oncol. 2003, 253–262.pl
dc.description.referencesBergdahl, M.; Bergdahl, J. Burning Mouth Syndrome: Prevalence and Associated Factors. J. Oral Pathol. Med. 2007, 28, 350–354.pl
dc.description.referencesSalort Llorca, C.; Mínguez Serra, M.P.; Silvestre, F.J. Drug-Induced Burning Mouth Syndrome: A New Etiological Diagnosis. Med. Oral Patol. Oral Cir. Bucal 2008, 13, 167–170.pl
dc.description.referencesPanghal, M.; Kaushal, V.; Kadayan, S.; Yadav, J.P. Incidence and Risk Factors for Infection in Oral Cancer Patients Undergoing Different Treatments Protocols. Bmc Oral Health 2012, 12.pl
dc.description.referencesBelazi, M.; Velegraki, A.; Koussidou-Eremondi, T.; Andreadis, D.; Hini, S.; Arsenis, G.; Eliopoulou, C.; Destouni, E.; Antoniades, D. Oral Candida Isolates in Patients Undergoing Radiotherapy for Head and Neck Cancer: Prevalence, Azole Susceptibility Profiles and Response to Antifungal Treatment. Oral Microbiol. Immunol. 2004, 19, 347–351.pl
dc.description.referencesMillsop, J.W.; Wang, E.A.; Fazel, N. Etiology, Evaluation, and Management of Xerostomia. Clin. Dermatol. 2017, 35, 468–476.pl
dc.description.referencesTenovuo, J. Antimicrobial Function of Human Saliva—How Important Is It for Oral Health? Acta Odontol. Scand. 1998, 56, 250–256.pl
dc.description.referencesMystkowska, J. Biocorrosion of Dental Alloys Due to Desulfotomaculum Nigrificans Bacteria. Acta Bioeng. Biomech. 2016, 18, 87–96.pl
dc.description.referencesSoni, P.; Parihar, R.S.; Soni, L.K. Opportunistic Microorganisms in Oral Cavity According to Treatment Status in Head and Neck Cancer Patients. J. Clin. Diagn. Res. 2017, 11, DC14–DC17.pl
dc.description.referencesUeta, E.; Osaki, T.; Yoneda, K.; Yamamoto, T. Functions of Salivary Polymorphonuclear Leukocytes (SPMNs) and Peripheral Blood Polymorphonuclear Leukocytes (PPMNs) from Healthy Individuals and Oral Cancer Patients. Clin. Immunol. Immunopathol. 1993, 66, 272–278.pl
dc.description.referencesŁysik, D.; Niemirowicz-Laskowska, K.; Bucki, R.; Tokajuk, G.; Mystkowska, J. Artificial Saliva: Challenges and Future Perspectives for the Treatment of Xerostomia. Int. J. Mol. Sci. 2019, 20, 3199.pl
dc.description.referencesLevine, M.J. Development of Artificial Salivas. Crit. Rev. Oral Biol. and Med. 1993, 4, 279–286.pl
dc.description.referencesLevine, M.J.; Aguirre, A.; Tabak, L.A.; Hatton, M.N. Artificial Salivas: Present and Future. J. Dent. Res. 1987, 66, 693–698.pl
dc.description.referencesMcMillan, A.S.; Peter Tsang, C.S.; Wong, M.C.M.; Kam, A.Y.L. Efficacy of a Novel Lubricating System in the Management of Radiotherapy-Related Xerostomia. Oral Oncol. 2006, 42, 842–848.pl
dc.description.referencesAndrysewicz, E.; Mystkowska, J.; Dabrowski, J.R.; Olchowik, R. Influence of Self-Made Saliva Substitutes on Tribological Characteristics of Human Enamel. Acta Bioeng. Biomech. 2014, 16, 67–74.pl
dc.description.referencesHahnel, S.; Behr, M.; Handel, G.; Bürgers, R. Saliva Substitutes for the Treatment of Radiation-Induced Xerostomia-a Review. Supportive Care Cancer 2009, 1331–1343.pl
dc.description.referencesHanning, S.M.; Medlicott, N.J. Oil-Based Compositions as Saliva Substitutes: A Pilot Study to Investigate in-Mouth Retention. Int. J. Pharm. 2016, 501, 265–270.pl
dc.description.referencesMystkowska, J.; Karalus, W.; Sidorenko, J.; D ˛abrowski, J.R.; Kalska-Szostko, B. Biotribological Properties of Dentures Lubricated with Artificial Saliva. J. Frict. Wear 2016, 37, 544–551.pl
dc.description.referencesMcGuire, D.B.; Fulton, J.S.; Park, J.; Brown, C.G.; Correa, M.E.P.; Eilers, J.; Elad, S.; Gibson, F.; Oberle-Edwards, L.K.; Bowen, J.; et al. Systematic Review of Basic Oral Care for the Management of Oral Mucositis in Cancer Patients. Supportive Care Cancer 2013, 3165–3177.pl
dc.description.referencesDos Santos Ramos, M.A.; Da Silva, P.B.; Spósito, L.; De Toledo, L.G.; Bonifácio, B.V.; Rodero, C.F.; Dos Santos, K.C.; Chorilli, M.; Bauab, T.M. Nanotechnology-Based Drug Delivery Systems for Control of Microbial Biofilms: A Review. Int. J. Nanomed. 2018, 1179–1213.pl
dc.description.referencesSalata, O.V. Applications of Nanoparticles in Biology and Medicine. J. Nanobiotechnology 2004.pl
dc.description.referencesVallabani, N.V.S.; Singh, S. Recent Advances and Future Prospects of Iron Oxide Nanoparticles in Biomedicine and Diagnostics. Biotech 2018.pl
dc.description.referencesArias, L.S.; Pessan, J.P.; Vieira, A.P.M.; De Lima, T.M.T.; Delbem, A.C.B.; Monteiro, D.R. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics 2018, 7, 46.pl
dc.description.referencesClauson, R.M.; Chen, M.; Scheetz, L.M.; Berg, B.; Chertok, B. Size-Controlled Iron Oxide Nanoplatforms with Lipidoid-Stabilized Shells for Efficient Magnetic Resonance Imaging-Trackable Lymph Node Targeting and High-Capacity Biomolecule Display. Acs Appl. Mater. Interfaces 2018.pl
dc.description.referencesHussein-Al-Ali, S.H.; El Zowalaty, M.E.; Kura, A.U.; Geilich, B.; Fakurazi, S.; Webster, T.J.; Hussein, M.Z. Antimicrobial and Controlled Release Studies of a Novel Nystatin Conjugated Iron Oxide Nanocomposite. Biomed Res. Int. 2014.pl
dc.description.referencesNguyen, T.K.; Duong, H.T.T.; Selvanayagam, R.; Boyer, C.; Barraud, N. Iron Oxide Nanoparticle-Mediated Hyperthermia Stimulates Dispersal in Bacterial Biofilms and Enhances Antibiotic Efficacy. Sci. Rep. 2015, 5.pl
dc.description.referencesPalza, H. Antimicrobial Polymers with Metal Nanoparticles. Int. J. Mol. Sci. 2015, 2099–2116.pl
dc.description.referencesAl-Madi, E.M.; Al-Jamie, M.A.; Al-Owaid, N.M.; Almohaimede, A.A.; Al-Owid, A.M. Antibacterial Efficacy of Silver Diamine Fluoride as a Root Canal Irrigant. Clin. Exp. Dent. Res. 2019, 5, 551–556.pl
dc.description.referencesJadhav, K.; HR, R.; Deshpande, S.; Jagwani, S.; Dhamecha, D.; Jalalpure, S.; Subburayan, K.; Baheti, D. Phytosynthesis of Gold Nanoparticles: Characterization, Biocompatibility, and Evaluation of Its Osteoinductive Potential for Application in Implant Dentistry. Mater. Sci. Eng. C 2018, 93, 664–670.pl
dc.description.referencesBerlutti, F.; Ajello, M.; Bosso, P.; Morea, C.; Petrucca, A.; Antonini, G.; Valenti, P. Both Lactoferrin and Iron Influence Aggregation and Biofilm Formation in Streptococcus Mutans. BioMetals 2004, 17, 271–278.pl
dc.description.referencesTonguc-Altin, K.; Sandalli, N.; Duman, G.; Selvi-Kuvvetli, S.; Topcuoglu, N.; Kulekci, G. Development of Novel Formulations Containing Lysozyme and Lactoferrin and Evaluation of Antibacterial Effects on Mutans Streptococci and Lactobacilli. Arch. Oral Biol. 2015, 60, 706–714.pl
dc.description.referencesTran, N.; Mir, A.; Mallik, D.; Sinha, A.; Nayar, S.; Webster, T.J. Bactericidal Effect of Iron Oxide Nanoparticles on Staphylococcus Aureus. Int. J. Nanomed. 2010, 5, 277–283.pl
dc.description.referencesHajipour, M.J.; Fromm, K.M.; Akbar Ashkarran, A.; de Aberasturi, D.J.; de Larramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial Properties of Nanoparticles. Trends in Biotechnol. 2012, 499–511.pl
dc.description.referencesde Toledo, L.; Rosseto, H.C.; Bruschi, M.L. Iron Oxide Magnetic Nanoparticles as Antimicrobials for Therapeutics. Pharm. Dev. Technol. 2018, 316–323.pl
dc.description.referencesNiemirowicz, K.; Piktel, E.; Wilczewska, A.Z.; Markiewicz, K.H.; Durna´s, B.; W ˛atek, M.; Puszkarz, I.; Wróblewska, M.; Nikli ´nska, W.; Savage, P.B.; et al. Core–Shell Magnetic Nanoparticles Display Synergistic Antibacterial Effects against Pseudomonas Aeruginosa and Staphylococcus Aureus When Combined with Cathelicidin LL-37 or Selected Ceragenins. Int. J. Nanomed. 2016, 11, 5443–5455.pl
dc.description.referencesNiemirowicz, K.; Swiecicka, I.; Wilczewska, A.Z.; Misztalewska, I.; Kalska-Szostko, B.; Bienias, K.; Bucki, R.; Car, H. Gold-Functionalized Magnetic Nanoparticles Restrict Growth of Pseudomonas Aeruginosa. Int. J. Nanomed. 2014, 9, 2217–2224.pl
dc.description.referencesNiemirowicz, K.; Durna´s, B.; Tokajuk, G.; Piktel, E.; Michalak, G.; Gu, X.; Kułakowska, A.; Savage, P.B.; Bucki, R. Formulation and Candidacidal Activity of Magnetic Nanoparticles Coated with Cathelicidin LL-37 and Ceragenin CSA-13. Sci. Rep. 2017, 7.pl
dc.description.referencesTokajuk, G.; Niemirowicz, K.; Deptuła, P.; Piktel, E.; Cie´sluk, M.; Wilczewska, A.Z.; D ˛abrowski, J.R.; Bucki, R. Use of Magnetic Nanoparticles as a Drug Delivery System to Improve Chlorhexidine Antimicrobial Activity. Int. J. Nanomed. 2017, 12, 7833–7846.pl
dc.description.referencesRodrigues, G.R.; López-Abarrategui, C.; de la Serna Gómez, I.; Dias, S.C.; Otero-González, A.J.; Franco, O.L. Antimicrobial Magnetic Nanoparticles Based-Therapies for Controlling Infectious Diseases. Int. J. Pharm. 2019, 356–367.pl
dc.description.referencesMai, T.; Hilt, J.Z. Magnetic Nanoparticles: Reactive Oxygen Species Generation and Potential Therapeutic Applications. J. Nanoparticle Res. 2017.pl
dc.description.referencesNiemirowicz, K.; Swiecicka, I.; Wilczewska, A.Z.; Markiewicz, K.H.; Surel, U.; Kułakowska, A.; Namiot, Z.; Szynaka, B.; Bucki, R.; Car, H. Growth Arrest and Rapid Capture of Select Pathogens Following Magnetic Nanoparticle Treatment. Colloids Surf. B Biointerfaces 2015, 131, 29–38.pl
dc.description.referencesWydra, R.J.; Rychahou, P.G.; Evers, B.M.; Anderson, K.W.; Dziubla, T.D.; Hilt, J.Z. The Role of ROS Generation from Magnetic Nanoparticles in an Alternating Magnetic Field on Cytotoxicity. Acta Biomater. 2015, 25, 284–290.pl
dc.description.referencesMystkowska, J.; Niemirowicz-Laskowska, K.; Łysik, D.; Tokajuk, G.; D ˛abrowski, J.R.; Bucki, R. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction–Corrosion and Friction Aspects. Int. J. Mol. Sci. 2018, 19, 743.pl
dc.description.referencesSouza, J.C.M.; Henriques, M.; Teughels, W.; Ponthiaux, P.; Celis, J.P.; Rocha, L.A. Wear and Corrosion Interactions on Titanium in Oral Environment: Literature Review. J. Bio. Tribo-Corros. 2015, 1.pl
dc.description.referencesMystkowska, J.; Dabrowski, J.R.; Romanowska, J.; Klekotka, M.; Car, H.; Milewska, A.J. Artificial Mucin-Based Saliva Preparations—Physicochemical and Tribological Properties. Oral Heal. Prev. Dent. 2018, 16, 183–193.pl
dc.description.referencesChristersson, C.E.; Lindh, L.; Arnebrant, T. Film-Forming Properties and Viscosities of Saliva Substitutes and Human Whole Saliva. Eur. J. Oral Sci. 2000, 108, 418–425.pl
dc.description.referencesVinke, J.; Kaper, H.J.; Vissink, A.; Sharma, P.K. An Ex Vivo Salivary Lubrication System to Mimic Xerostomic Conditions and to Predict the Lubricating Properties of Xerostomia Relieving Agents. Sci. Rep. 2018, 8.pl
dc.description.referencesBongaerts, J.H.H.; Rossetti, D.; Stokes, J.R. The Lubricating Properties of Human Whole Saliva. Tribol. Lett. 2007, 27, 277–287.pl
dc.description.referencesMystkowska, J.; Łysik, D.; Klekotka, M. Effect of Saliva and Mucin-Based Saliva Substitutes on Fretting Processes of 316 Austenitic Stainless Steel. Metals 2019, 9, 178.pl
dc.description.referencesSonmez, M.; Georgescu, M.; Alexandrescu, L.; Gurau, D.; Ficai, A.; Ficai, D.; Andronescu, E. Synthesis and Applications of Fe3O4/SiO2 Core-Shell Materials. Curr. Pharm. Des. 2015, 21, 5324–5335.pl
dc.description.volume21pl
dc.description.issue6pl
dc.description.firstpage1pl
dc.description.lastpage17pl
dc.identifier.citation2International Journal of Molecular Sciencespl
dc.identifier.orcid0000-0002-3311-7147-
dc.identifier.orcid0000-0002-3386-146X-
dc.identifier.orcid0000-0002-5370-0030-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0001-7664-9226-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons