REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/16597
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorTokajuk, Grażyna-
dc.contributor.authorNiemirowicz, Katarzyna-
dc.contributor.authorDeptuła, Piotr-
dc.contributor.authorPiktel, Ewelina-
dc.contributor.authorCieśluk, Mateusz-
dc.contributor.authorWilczewska, Agnieszka Z.-
dc.contributor.authorDąbrowski, Jan R.-
dc.contributor.authorBucki, Robert-
dc.date.accessioned2024-06-03T09:00:30Z-
dc.date.available2024-06-03T09:00:30Z-
dc.date.issued2017-
dc.identifier.citationInternational Journal of Nanomedicine, Volume 12, 2017, p. 7833–7846pl
dc.identifier.issn1178-2013-
dc.identifier.urihttp://hdl.handle.net/11320/16597-
dc.description.abstractNanotechnology offers new tools for developing therapies to prevent and treat oral infections, particularly biofilm-dependent disorders, such as dental plaques and endodontic and periodontal diseases. Chlorhexidine (CHX) is a well-characterized antiseptic agent used in dentistry with broad spectrum activity. However, its application is limited due to inactivation in body fluid and cytotoxicity toward human cells, particularly at high concentrations. To overcome these limitations, we synthesized nanosystems composed of aminosilane-coated magnetic nanoparticles functionalized with chlorhexidine (MNP@CHX). In the presence of human saliva, MNPs@ CHX displayed significantly greater bactericidal and fungicidal activity against planktonic and biofilm-forming microorganisms than free CHX. In addition, CHX attached to MNPs has an increased ability to restrict the growth of mixed-species biofilms compared to free CHX. The observed depolarization of mitochondria in fungal cells treated with MNP@CHX suggests that induction of oxidative stress and oxidation of fungal structures may be a part of the mechanism responsible for pathogen killing. Nanoparticles functionalized by CHX did not affect host cell proliferation or their ability to release the proinflammatory cytokine, IL-8. The use of MNPs as a carrier of CHX has great potential for the development of antiseptic nanosystems.pl
dc.description.sponsorshipThis work was supported by the National Science Center, Poland, under grant UMO-2014/15/D/NZ6/02665 (to KN). In 2016, KN was awarded a fellowship from the Foundation for Polish Science. This study was conducted with the use of equipment purchased by the Medical University of Białystok as part of the RPOWP 2007–2013 funding, Priority I, Axis 1.1, contract number UDA-RPPD.01.01.00-20-001/15-00, dated 26.06.2015.pl
dc.language.isoenpl
dc.publisherDove Presspl
dc.rightsUznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe*
dc.rights.uricreativecommons.org/licenses/by-nc/3.0/*
dc.subjectchlorhexidinepl
dc.subjectmagnetic nanoparticlespl
dc.subjectantimicrobial propertiespl
dc.subjectanti-biofilmpl
dc.titleUse of magnetic nanoparticles as a drug delivery system to improve chlorohexidine antimicrobial activitypl
dc.typeArticlepl
dc.rights.holder© 2017 Tokajuk et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).pl
dc.identifier.doi10.2147/IJN.S140661-
dc.description.AffiliationGrażyna Tokajuk - Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok; Department of Intergrated Dentistry, Medical University of Białystokpl
dc.description.AffiliationKatarzyna Niemirowicz - Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystokpl
dc.description.AffiliationPiotr Deptuła - Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok; Department of Materials and Biomedical Engineering, Białystok University of Technologypl
dc.description.AffiliationEwelina Piktel - Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystokpl
dc.description.AffiliationMateusz Cieśluk - Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystokpl
dc.description.AffiliationAgnieszka Z. Wilczewska - Institute of Chemistry, University of Białystok, Białystok, Polandpl
dc.description.AffiliationJan R. Dąbrowski - Department of Materials and Biomedical Engineering, Białystok University of Technologypl
dc.description.AffiliationRobert Bucki - Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystokpl
dc.description.referencesKarpiński TM, Szkaradkiewicz AK. Chlorhexidine – pharmacobiological activity and application. Eur Rev Med Pharmacol Sci. 2015; 19(7):1321–1326.pl
dc.description.referencesWood A, Payne D. The action of three antiseptics/disinfectants against enveloped and non-enveloped viruses. J Hosp Infect. 1998;38(4): 283–295.pl
dc.description.referencesFathilah AR, Himratul-Aznita WH, Fatheen AR, Suriani KR. The antifungal properties of chlorhexidine digluconate and cetylpyrinidinium chloride on oral Candida. J Dent. 2012;40(7):609–615.pl
dc.description.referencesKuyyakanond T, Quesnel LB. The mechanism of action of chlorhexidine. FEMS Microbiol Lett. 1992;100(1–3):211–215.pl
dc.description.referencesZorko M, Jerala R. Alexidine and chlorhexidine bind to lipopolysaccharide and lipoteichoic acid and prevent cell activation by antibiotics. J Antimicrob Chemother. 2008;62(4):730–737.pl
dc.description.referencesBonacorsi C, Raddi MS, Carlos IZ. Cytotoxicity of chlorhexidine digluconate to murine macrophages and its effect on hydrogen peroxide and nitric oxide induction. Braz J Med Biol Res. 2004;37(2):207–212.pl
dc.description.referencesMimoz O, Lucet JC, Kerforne T, et al. Skin antisepsis with chlorhexidine-alcohol versus povidone iodine-alcohol, with and without skin scrubbing, for prevention of intravascular-catheter-related infection (CLEAN): an open-label, multicentre, randomised, controlled, twoby-two factorial trial. Lancet. 2015;386(10008):2069–2077.pl
dc.description.referencesCoetzee E, Rode H, Kahn D. Pseudomonas aeruginosa burn wound infection in a dedicated paediatric burns unit. S Afr J Surg. 2013;51(2): 50–53.pl
dc.description.referencesVaroni E, Tarce M, Lodi G, Carrassi A. Chlorhexidine (CHX) in dentistry: state of the art. Minerva Stomatol. 2012;61(9):399–419.pl
dc.description.referencesManikandan D, Balaji VR, Niazi TM, Rohini G, Karthikeyan B, Jesudoss P. Chlorhexidine varnish implemented treatment strategy for chronic periodontitis: a clinical and microbial study. J Pharm Bioallied Sci. 2016;8(Suppl 1):S133–S137.pl
dc.description.referencesEdmiston CE Jr, Bruden B, Rucinski MC, Henen C, Graham MB, Lewis BL. Reducing the risk of surgical site infections: does chlorhexidine gluconate provide a risk reduction benefit? Am J Infect Control. 2013;41(5 Suppl):S49–S55.pl
dc.description.referencesMiller LM, Loder JS, Hansbrough JF, Peterson HD, Monafo WW, Jordan MH. Patient tolerance study of topical chlorhexidine diphosphanilate: a new topical agent for burns. Burns. 1990;16(3):217–220.pl
dc.description.referencesSupranoto SC, Slot DE, Addy M, Van der Weijden GA. The effect of chlorhexidine dentifrice or gel versus chlorhexidine mouthwash on plaque, gingivitis, bleeding and tooth discoloration: a systematic review. Int J Dent Hyg. 2015;13(2):83–92.pl
dc.description.referencesAthanassiadis B, Abbott PV, Walsh LJ. The use of calcium hydroxide, antibiotics and biocides as antimicrobial medicaments in endodontics. Aust Dent J. 2007;52(1 Suppl):S64–S82.pl
dc.description.referencesMcDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999;12(1):147–179.pl
dc.description.referencesBrooks SE, Walczak MA, Hameed R, Coonan P. Chlorhexidine resistance in antibiotic-resistant bacteria isolated from the surfaces of dispensers of soap containing chlorhexidine. Infect Control Hosp Epidemiol. 2002;23(11):692–695.pl
dc.description.referencesBhardwaj P, Ziegler E, Palmer KL. Chlorhexidine induces vanAtype vancomycin resistance genes in enterococci. Antimicrob Agents Chemother. 2016;60(4):2209–2221.pl
dc.description.referencesLiu Q, Zhao H, Han L, Shu W, Wu Q, Ni Y. Frequency of biocideresistant genes and susceptibility to chlorhexidine in high-level-mupirocin-resistant, methicillin-resistant Staphylococcus aureus (MuHMRSA). Diagn Microbiol Infect Dis. 2015;82(4):278–283.pl
dc.description.referencesHuh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011;156(2):128–145.pl
dc.description.referencesPiktel E, Niemirowicz K, Wątek M, Wollny T, Deptuła P, Bucki R. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy. J Nanobiotechnology. 2016; 14(1):39.pl
dc.description.referencesNiemirowicz K, Prokop I, Wilczewska AZ, et al. Magnetic nanoparticles enhance the anticancer activity of cathelicidin LL-37 peptide against colon cancer cells. Int J Nanomedicine. 2015;10:3843–3853.pl
dc.description.referencesNiemirowicz K, Surel U, Wilczewska AZ, et al. Bactericidal activity and biocompatibility of ceragenin-coated magnetic nanoparticles. J Nanobiotechnology. 2015;13(1):32.pl
dc.description.referencesMichalak G, Gluszek K, Piktel E, et al. Polymeric nanoparticles – a novel solution for delivery of antimicrobial agents. Studia Medyczne. 2016;32(1):56–62.pl
dc.description.referencesGu H, Ho PL, Tong E, Wang L, Xu B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Letters. 2003;3(9): 1261–1263.pl
dc.description.referencesNiemirowicz K, Markiewicz KH, Wilczewska AZ, Car H. Magnetic nanoparticles as new diagnostic tools in medicine. Adv Med Sci. 2012;57(2):196–207.pl
dc.description.referencesNiemirowicz K, Swiecicka I, Wilczewska AZ, et al. Growth arrest and rapid capture of select pathogens following magnetic nanoparticle treatment. Colloids Surf B Biointerfaces. 2015;131:29–38.pl
dc.description.referencesPark H, Park HJ, Kim JA, et al. Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia using superparamagnetic nanoparticles. J Microbiol Methods. 2011;84(1):41–45.pl
dc.description.referencesTaylor E, Webster TJ. Reducing infections through nanotechnology and nanoparticles. Int J Nanomedicine. 2011;6:1463–1473.pl
dc.description.referencesNiemirowicz K, Durnas´ B, Tokajuk G, et al. Magnetic nanoparticles as a drug delivery system that enhance fungicidal activity of polyene antibiotics. Nanomedicine. 2016;12(8):2395–2404.pl
dc.description.referencesMassart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions on Magnetics. 1981;17(2):1247–1248.pl
dc.description.referencesNiemirowicz K, Swiecicka I, Wilczewska AZ, et al. Gold-functionalized magnetic nanoparticles restrict growth of Pseudomonas aeruginosa. Int J Nanomedicine. 2014;9:2217–2224.pl
dc.description.referencesMisztalewska I, Wilczewska AZ, Wojtasik O, Markiewicz KH, Kuchlewski P, Majcher AM. New acetylacetone-polymer modified nanoparticles as magnetically separable complexing agents. RSC Advances. 2015;5(121):100281–100289.pl
dc.description.referencesMeletiadis J, Mouton JW, Meis JF, et al. Comparison of spectrophotometric and visual readings of NCCLS method and evaluation of a colorimetric method based on reduction of a soluble tetrazolium salt, 2,3-bis [2-methoxy-4-nitro-5-[(sulfenylamino) carbonyl]-2Htetrazolium-hydroxide], for antifungal susceptibility testing of Aspergillus species. J Clin Microbiol. 2001;39(12):4256–4263.pl
dc.description.referencesSabaeifard P, Abdi-Ali A, Soudi MR, Dinarvand R. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J Microbiol Methods. 2014;105:134–140.pl
dc.description.referencesO’Toole GA. Microtiter dish biofilm formation assay. J Vis Exp. 2011;(47):pii 2437.pl
dc.description.referencesHussein-Al-Ali SH, El Zowalaty ME, Hussein MZ, Ismail M, Webster TJ. Synthesis, characterization, controlled release, and antibacterial studies of a novel streptomycin chitosan magnetic nanoantibiotic. Int J Nanomed. 2014;9:549–557.pl
dc.description.referencesNiemirowicz K, Piktel E, Wilczewska AZ, et al. Core-shell magnetic nanoparticles display synergistic antibacterial effects against Pseudomonas aeruginosa and Staphylococcus aureus when combined with cathelicidin LL-37 or selected ceragenins. Int J Nanomedicine. 2016;11:5443–5455.pl
dc.description.referencesBucki R, Niemirowicz K, Wnorowska U, et al. Polyelectrolyte-mediated increase of biofilm mass formation. BMC Microbiol. 2015;15:117.pl
dc.description.referencesWnorowska U, Wątek M, Durnas´ B, et al. Extracellular DNA as an essential component and therapeutic target of microbial biofilm. Studia Medyczne. 2015;31(2):132–138.pl
dc.description.referencesNguyen TK, Duong HTT, Selvanayagam R, Boyer C, Barraud N. Iron oxide nanoparticle-mediated hyperthermia stimulates dispersal in bacterial biofilms and enhances antibiotic efficacy. Sci Rep. 2015;5:18385.pl
dc.description.referencesBarrett-Bee K, Newboult L, Edwards S. The membrane destabilising action of the antibacterial agent chlorhexidine. FEMS Microbiol Lett. 1994;119(1–2):249–253.pl
dc.description.referencesAudus KL, Tavakoli-Saberi MR, Zheng H, Boyce EN. Chlorhexidine effects on membrane lipid domains of human buccal epithelial cells. J Dent Res. 1992;71(6):1298–1303.pl
dc.description.referencesMantri SS, Mantri SP. The nano era in dentistry. J Nat Sci Biol Med. 2013;4(1):39–44.pl
dc.description.referencesAbou Neel EA, Bozec L, Perez RA, Kim HW, Knowles JC. Nanotechnology in dentistry: prevention, diagnosis, and therapy. Int J Nanomedicine. 2015;10:6371–6394.pl
dc.description.referencesLi F, Weir MD, Fouad AF, Xu HH. Effect of salivary pellicle on antibacterial activity of novel antibacterial dental adhesives using a dental plaque microcosm biofilm model. Dent Mater. 2014;30(2):182–191.pl
dc.description.referencesBesinis A, De Peralta T, Handy RD. Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine. Nanotoxicology. 2014;8(7):745–754.pl
dc.description.referencesSiqueira JF, Sen BH. Fungi in endodontic infections. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97(5):632–641.pl
dc.description.referencesGomes C, Fidel S, Fidel R, de Moura Sarquis MI. Isolation and taxonomy of filamentous fungi in endodontic infections. J Endod. 2010; 36(4):626–629.pl
dc.description.referencesO’Donnell LE, Millhouse E, Sherry L, et al. Polymicrobial Candida biofilms: friends and foe in the oral cavity. FEMS Yeast Res. 2015;15(7).pl
dc.description.referencesAmenabar I, Poly S, Nuansing W, et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat Commun. 2013;4:2890.pl
dc.description.referencesShi YB, Liu L, Shao W, Wei T, Lin GM. Microcalorimetry studies of the antimicrobial actions of alkaloids. J Zhejiang Univ Sci B. 2015; 16(8):690–695.pl
dc.description.referencesMiyake Y, Tsunoda T, Minagi S, Akagawa Y, Tsuru H, Suginaka H. Antifungal drugs affect adherence of Candida albicans to acrylic surfaces by changing the zeta-potential of fungal cells. FEMS Microbiol Lett. 1990;57(3):211–214.pl
dc.description.referencesSardi JC, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJ. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 2013;62(Pt 1):10–24.pl
dc.description.referencesBalloni S, Locci P, Lumare A, Marinucci L. Cytotoxicity of three commercial mouthrinses on extracellular matrix metabolism and human gingival cell behaviour. Toxicol In Vitro. 2016;34:88–96.pl
dc.description.referencesPoletaev A, Boura P. The immune system, natural autoantibodies and general homeostasis in health and disease. Hippokratia. 2011;15(4): 295–298.pl
dc.description.referencesWong DT, Cheung GS. Extension of bactericidal effect of sodium hypochlorite into dentinal tubules. J Endod. 2014;40(6):825–829.pl
dc.description.referencesPeck BW, Workeneh B, Kadikoy H, Abdellatif A. Sodium hypochloriteinduced acute kidney injury. Saudi J Kidney Dis Transpl. 2014;25(2): 381–384.pl
dc.description.referencesCavaleiro E, Duarte AS, Esteves AC, et al. Novel linear polymers able to inhibit bacterial quorum sensing. Macromol Biosci. 2015;15(5): 647–656.pl
dc.description.referencesGuégan S, Lanternier F, Rouzaud C, Dupin N, Lortholary O. Fungal skin and soft tissue infections. Curr Opin Infect Dis. 2016;29(2):124–130.pl
dc.description.referencesChen H, Shi Q, Qing Y, Yao YC, Cao YG. Cytotoxicity of modified nonequilibrium plasma with chlorhexidine digluconate on primary cultured human gingival fibroblasts. J Huazhong Univ Sci Technolog Med Sci. 2016;36(1):137–141.pl
dc.description.referencesWang B, Wei P, Wang X, Lou W. Controlled synthesis and sizedependent thermal conductivity of Fe3 O4 magnetic nanofluids. Dalton Trans. 2012;41(3):896–899.pl
dc.description.volume12pl
dc.description.firstpage7833pl
dc.description.lastpage7846pl
dc.identifier.citation2International Journal of Nanomedicinepl
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons