REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/16594
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorPawelski, Damian-
dc.contributor.authorDelgado Fernandez, Olivia-
dc.contributor.authorWilczewska, Agnieszka Z.-
dc.contributor.authorStrawa, Jakub W.-
dc.contributor.authorPłońska - Brzezińska, Marta E.-
dc.date.accessioned2024-06-03T07:56:31Z-
dc.date.available2024-06-03T07:56:31Z-
dc.date.issued2022-
dc.identifier.citationACS Applied Nano Materials, Volume 5, Issue 11, 2022, p. 16376−16387pl
dc.identifier.issn2574-0970-
dc.identifier.urihttp://hdl.handle.net/11320/16594-
dc.description.abstractCarbon nanostructures offer a perfect link between nanoscale materials and organic molecules, making them an ideal platform for molecular catalysts. Herein, an efficient, straightforward, and high-yield synthetic approach is described to synthesize aryl boronic acid containing the pyrene moiety that is noncovalently immobilized by π−π interaction to carbon nano-onions’surface. The nanostructured carbon material catalyzes the direct amide coupling reaction under microwaved heating in the absence of a solvent. The multilayered structures of carbon nano-onions ensure high thermal stability, and simultaneously, they are excellent microwaved absorbers, which reduce energy consumption. The absorption of microwaved radiation by the nanostructured carbon catalyst effectively influences yield of the catalytic reaction, which is up to 94%. Additionally, the recovery of catalytic material is straightforward, and the mass losses are negligible. Microwave heating in a solvent-free condition simplifies the reaction and reduces the amount of waste, which, in turn, depletes the environmental impact.pl
dc.description.sponsorshipThe financial support of the National Science Centre, Poland, Grant #2019/35/B/ST5/00572 to M.E.P.-B.pl
dc.language.isoenpl
dc.publisherACSpl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectnanostructured carbon catalystpl
dc.subjectmicrowave-assisted synthesispl
dc.subjectcarbon nano-onionpl
dc.subjectheterogeneous catalysispl
dc.subjectamide coupling reactionpl
dc.subjectmicrowave heatingpl
dc.titleNanostructured Carbon Catalyst for Amide Coupling Reactions under Microwave Heating in the Absence of a Solventpl
dc.typeArticlepl
dc.rights.holderCopyright © 2022 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0.pl
dc.identifier.doi10.1021/acsanm.2c03437-
dc.description.EmailMarta E. Plonska-Brzezinska: marta.plonska-brzezinska@umb.edu.plpl
dc.description.AffiliationMarta E. Plonska-Brzezinska − Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, 15-222 Bialystok, Polandpl
dc.description.AffiliationDamian Pawelski − Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, 15-222 Bialystok, Polandpl
dc.description.AffiliationOlivia Fernandez Delgado − University of Texas at El Paso, El Paso, Texas 79968-8807, United Statespl
dc.description.AffiliationAgnieszka Z. Wilczewska − Faculty of Chemistry, University of Bialystok, 15-245 Bialystok, Polandpl
dc.description.AffiliationJakub W. Strawa − Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, 15-230 Bialystok, Polandpl
dc.description.referencesValeur, E.; Bradley, M. Amide Bond Formation: Beyond the Myth of Coupling Reagents. Chem. Soc. Rev. 2009, 38, 606−631.pl
dc.description.referencesGhose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999, 1, 55−68.pl
dc.description.referencesCharville, H.; Jackson, D.; Hodges, G.; Whiting, A. The Thermal and Boron-Catalysed Direct Amide Formation Reactions: Mechanistically Understudied yet Important Processes. Chem. Commun. 2010, 46, 1813−1823.pl
dc.description.referencesJursic, B. S.; Zdravkovski, Z. A Simple Preparation of Amides from Acids and Amines by Heating of Their Mixture. Synth. Commun. 1993, 23, 2761−2770pl
dc.description.referencesWang, S.-M.; Zhao, C.; Zhang, X.; Qin, H.-L. Clickable Coupling of Carboxylic Acids and Amines at Room Temperature Mediated by SO 2 F 2: A Significant Breakthrough for the Construction of Amides and Peptide Linkages. Org. Biomol. Chem. 2019, 17, 4087−4101.pl
dc.description.referencesLiu, J.; Wang, S.-M.; Qin, H.-L. Room Temperature Clickable Coupling Electron Deficient Amines with Sterically Hindered Carboxylic Acids for the Construction of Amides. Tetrahedron 2020, 76, No. 131724.pl
dc.description.referencesWang, S.-P.; Cheung, C. W.; Ma, J.-A. Direct Amidation of Carboxylic Acids with Nitroarenes. J. Org. Chem. 2019, 84, 13922−13934.pl
dc.description.referencesCoomber, C. E.; Laserna, V.; Martin, L. T.; Smith, P. D.; Hailes, H. C.; Porter, M. J.; Sheppard, T. D. Catalytic Direct Amidations in Tert -Butyl Acetate Using B(OCH2CF3)3. Org. Biomol. Chem. 2019, 17, 6465−6469.pl
dc.description.referencesGelens, E.; Smeets, L.; Sliedregt, L. A. J. M.; van Steen, B. J.; Kruse, C. G.; Leurs, R.; Orru, R. V. A. An Atom Efficient and SolventFree Synthesis of Structurally Diverse Amides Using Microwaves. Tetrahedron Lett. 2005, 46, 3751−3754.pl
dc.description.referencesWang, X.; Yang, Q.; Liu, F.; You, Q. Microwave-Assisted Synthesis of Amide under Solvent-free Conditions. Synth. Commun. 2008, 38, 1028−1035.pl
dc.description.referencesMenéndez, J.; Arenillas, A.; Fidalgo, B.; Fernández, Y.; Zubizarreta, L.; Calvo, E. G.; Bermudez, ́ J. M. Microwave Heating Processes Involving Carbon Materials. Fuel Process. Technol. 2010, 91, 1−8.pl
dc.description.referencesPerreux, L.; Loupy, A.; Volatron, F. Solvent-Free Preparation of Amides from Acids and Primary Amines under Microwave Irradiation. Tetrahedron 2002, 58, 2155−2162.pl
dc.description.referencesTang, P. Boric Acid Catalyzed Amide Formation from Carboxylic Acids and Amines: N-Benzyl-4-phenylbutyramide: (Benzenebutanamide, N-(Phenylmethyl)-). In Organic Syntheses; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp 262−272.pl
dc.description.referencesDu, Y.; Barber, T.; Lim, S. E.; Rzepa, H. S.; Baxendale, I. R.; Whiting, A. A Solid-Supported Arylboronic Acid Catalyst for Direct Amidation. Chem. Commun. 2019, 55, 2916−2919.pl
dc.description.referencesIshihara, K.; Ohara, S.; Yamamoto, H. (3,4,5-trifluorophenyl)-boronic acid-catalyzed amide formation from carboxylic acids and amines: n-benzyl-4-phenylbutyramide. Org. Synth. 2002, 79, No. 176.pl
dc.description.referencesYamashita, R.; Sakakura, A.; Ishihara, K. Primary Alkylboronic Acids as Highly Active Catalysts for the Dehydrative Amide Condensation of α-Hydroxycarboxylic Acids. Org. Lett. 2013, 15, 3654−3657.pl
dc.description.referencesChandra Shekhar, A.; Ravi Kumar, A.; Sathaiah, G.; Luke Paul, V.; Sridhar, M.; Shanthan Rao, P. Facile N-Formylation of Amines Using Lewis Acids as Novel Catalysts. Tetrahedron Lett. 2009, 50, 7099−7101.pl
dc.description.referencesZarecki, A. P.; Kolanowski, J. L.; Markiewicz, W. T. MicrowaveAssisted Catalytic Method for a Green Synthesis of Amides Directly from Amines and Carboxylic Acids. Molecules 2020, 25, No. 1761.pl
dc.description.referencesLi, Z.; Liu, L.; Xu, K.; Huang, T.; Li, X.; Song, B.; Chen, T. Palladium-Catalyzed N-Acylation of Tertiary Amines by Carboxylic Acids: A Method for the Synthesis of Amides. Org. Lett. 2020, 22, 5517−5521.pl
dc.description.referencesBongers, J.; Heimer, E. P. Recent Applications of Enzymatic Peptide Synthesis. Peptides 1994, 15, 183−193.pl
dc.description.referencesLundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Catalytic Amide Formation from Non-Activated Carboxylic Acids and Amines. Chem. Soc. Rev. 2014, 43, 2714−2742.pl
dc.description.referencesLatta, R.; Springsteen, G.; Wang, B. Development and Synthesis of an Arylboronic Acid-Based Solid-Phase Amidation Catalyst. Synthesis 2001, 2001, 1611−1613.pl
dc.description.referencesGu, L.; Lim, J.; Cheong, J. L.; Lee, S. S. MCF-Supported Boronic Acids as Efficient Catalysts for Direct Amide Condensation of Carboxylic Acids and Amines. Chem. Commun. 2014, 50, 7017−7019.pl
dc.description.referencesMaki, T.; Ishihara, K.; Yamamoto, H. N -Alkyl-4-Boronopyridinium Salts as Thermally Stable and Reusable Amide Condensation Catalysts. Org. Lett. 2005, 7, 5043−5046.pl
dc.description.referencesIshihara, K.; Kondo, S.; Yamamoto, H. 3,5-Bis(Perfluorodecyl)-Phenylboronic Acid as an Easily Recyclable Direct Amide Condensation Catalyst. Synlett 2001, 2001, 1371−1374.pl
dc.description.referencesYu, D.; Nagelli, E.; Du, F.; Dai, L. Metal-Free Carbon Nanomaterials Become More Active than Metal Catalysts and Last Longer. J. Phys. Chem. Lett. 2010, 1, 2165−2173.pl
dc.description.referencesChen, R. J.; Zhang, Y.; Wang, D.; Dai, H. Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization. J. Am. Chem. Soc. 2001, 123, 3838−3839.pl
dc.description.referencesFranco, J. H.; Klunder, K. J.; Lee, J.; Russell, V.; de Andrade, A. R.; Minteer, S. D. Enhanced Electrochemical Oxidation of Ethanol Using a Hybrid Catalyst Cascade Architecture Containing PyreneTEMPO, Oxalate Decarboxylase and Carboxylated Multi-Walled Carbon Nanotube. Biosens. Bioelectron. 2020, 154, No. 112077.pl
dc.description.referencesTaher, A.; Lee, K. C.; Han, H. J.; Kim, D. W. Pyrene-Tagged Ionic Liquids: Separable Organic Catalysts for S N 2 Fluorination. Org. Lett. 2017, 19, 3342−3345.pl
dc.description.referencesReuillard, B.; Ly, K. H.; Rosser, T. E.; Kuehnel, M. F.; Zebger, I.; Reisner, E. Tuning Product Selectivity for Aqueous CO 2 Reduction with a Mn(Bipyridine)-Pyrene Catalyst Immobilized on a Carbon Nanotube Electrode. J. Am. Chem. Soc. 2017, 139, 14425−14435.pl
dc.description.referencesZhang, X.; Wang, B.; Lu, Y.; Xia, C.; Liu, J. Homogeneous and Noncovalent Immobilization of NHC-Cu Catalyzed Azide-Alkyne Cycloaddition Reaction. Mol. Catal. 2021, 504, No. 111452.pl
dc.description.referencesMaurin, A.; Robert, M. Noncovalent Immobilization of a Molecular Iron-Based Electrocatalyst on Carbon Electrodes for Selective, Efficient CO 2 -to-CO Conversion in Water. J. Am. Chem. Soc. 2016, 138, 2492−2495.pl
dc.description.referencesWittmann, S.; Schätz, A.; Grass, R. N.; Stark, W. J.; Reiser, O. A Recyclable Nanoparticle-Supported Palladium Catalyst for the Hydroxycarbonylation of Aryl Halides in Water. Angew. Chem., Int. Ed. 2010, 49, 1867−1870.pl
dc.description.referencesQiu, L.-Q.; Chen, K.-H.; Yang, Z.-W.; He, L.-N. A Rhenium Catalyst with Bifunctional Pyrene Groups Boosts Natural LightDriven CO 2 Reduction. Green Chem. 2020, 22, 8614−8622.pl
dc.description.referencesPlonska-Brzezinska, M. E. Carbon Nano-Onions: A Review of Recent Progress in Synthesis and Applications. ChemNanoMat 2019, 5, 568−580.pl
dc.description.referencesBartkowski, M.; Giordani, S. Supramolecular Chemistry of Carbon Nano-Onions. Nanoscale 2020, 12, 9352−9358.pl
dc.description.referencesKuzhir, P.; Maksimenko, S.; Bychanok, D.; Kuznetsov, V.; Moseenkov, S.; Mazov, I.; Shenderova, O.; Lambin, Ph. Nano-Scaled Onion-like Carbon: Prospective Material for Microwave Coatings. Metamaterials 2009, 3, 148−156.pl
dc.description.referencesZeiger, M.; Jäckel, N.; Mochalin, V. N.; Presser, V. Review: Carbon Onions for Electrochemical Energy Storage. J. Mater. Chem. A 2016, 4, 3172−3196.pl
dc.description.referencesGrądzka, E.; Winkler, K.; Borowska, M.; Plonska-Brzezinska, M. E.; Echegoyen, L. Comparison of the Electrochemical Properties of Thin Films of MWCNTs/C60-Pd, SWCNTs/C60-Pd and OxCNOs/C60-Pd. Electrochim. Acta 2013, 96, 274−284.pl
dc.description.referencesMykhailiv, O.; Lapinski, A.; Molina-Ontoria, A.; Regulska, E.; Echegoyen, L.; Dubis, A. T.; Plonska-Brzezinska, M. E. Influence of the Synthetic Conditions on the Structural and Electrochemical Properties of Carbon Nano-Onions. ChemPhysChem 2015, 16, 2182−2191.pl
dc.description.referencesPlonska-Brzezinska, M. E.; Molina-Ontoria, A.; Echegoyen, L. Post-Modification by Low-Temperature Annealing of Carbon NanoOnions in the Presence of Carbohydrates. Carbon 2014, 67, 304−317.pl
dc.description.referencesMykhailiv, O.; Zubyk, H.; Brzezinski, K.; Gras, M.; Lota, G.; Gniadek, M.; Romero, E.; Echegoyen, L.; Plonska-Brzezinska, M. E. Improvement of the Structural and Chemical Properties of Carbon Nano-Onions for Electrocatalysis. ChemNanoMat 2017, 3, 583−590.pl
dc.description.referencesSzymanski, ́ G. S.; Wisniewski, ́ M.; Olejnik, P.; Koter, S.; Castro, E.; Echegoyen, L.; Terzyk, A. P.; Plonska-Brzezinska, M. E. Correlation between the Catalytic and Electrocatalytic Properties of Nitrogen-Doped Carbon Nanoonions and the Polarity of the Carbon Surface: Experimental and Theoretical Investigations. Carbon 2019, 151, 120−129.pl
dc.description.referencesPlonska-Brzezinska, M. E.; Brus, D. M.; Breczko, J.; Echegoyen, L. Carbon Nano-Onions and Biocompatible Polymers for Flavonoid Incorporation. Chem. - Eur. J. 2013, 19, 5019−5024.pl
dc.description.referencesBobrowska, D. M.; Czyrko, J.; Brzezinski, K.; Echegoyen, L.; Plonska-Brzezinska, M. E. Carbon Nano-Onion Composites: Physicochemical Characteristics and Biological Activity. Fullerenes, Nanotubes, Carbon Nanostruct. 2016, 25, 185−192.pl
dc.description.referencesKhorsandi, Z.; Metkazini, S. F. M.; Heydari, A.; Varma, R. S. Visible Light-Driven Direct Synthesis of Ketones from Aldehydes via C H Bond Activation Using NiCu Nanoparticles Adorned on Carbon Nano Onions. Mol. Catal. 2021, 516, No. 111987.pl
dc.description.referencesSchaetz, A.; Zeltner, M.; Stark, W. J. Carbon Modifications and Surfaces for Catalytic Organic Transformations. ACS Catal. 2012, 2, 1267−1284.pl
dc.description.referencesKuznetsov, V. L.; Chuvilin, A. L.; Butenko, Y. V.; Mal’kov, I. Y.; Titov, V. M. Onion-like Carbon from Ultra-Disperse Diamond. Chem. Phys. Lett. 1994, 222, 343−348.pl
dc.description.referencesGuo, Y.; Wang, L.; Zhuo, J.; Xu, B.; Li, X.; Zhang, J.; Zhang, Z.; Chi, H.; Dong, Y.; Lu, G. A Pyrene-Based Dual Chemosensor for Colorimetric Detection of Cu 2+ and Fluorescent Detection of Fe 3+.Tetrahedron Lett. 2017, 58, 3951−3956.pl
dc.description.referencesZhang, R.; Tang, D.; Lu, P.; Yang, X.; Liao, D.; Zhang, Y.; Zhang, M.; Yu, C.; Yam, V. W. W. Nucleic Acid-Induced Aggregation and Pyrene Excimer Formation. Org. Lett. 2009, 11, 4302−4305.pl
dc.description.referencesAndersson, O. E.; Prasad, B. L. V.; Sato, H.; Enoki, T.; Hishiyama, Y.; Kaburagi, Y.; Yoshikawa, M.; Bandow, S. Structure and Electronic Properties of Graphite Nanoparticles. Phys. Rev. B 1998, 58, 16387−16395.pl
dc.description.referencesRettenbacher, A. S.; Elliott, B.; Hudson, J. S.; Amirkhanian, A.; Echegoyen, L. Preparation and Functionalization of Multilayer Fullerenes (Carbon Nano-Onions). Chem. - Eur. J. 2006, 12, 376−387.pl
dc.description.referencesVollmann, H.; Becker, H.; Corell, M.; Streeck, H. Beitragë zur Kenntnis des Pyrens und seiner Derivate. Justus Liebigs Ann. Chem. 1937, 531, 1−159.pl
dc.description.referencesHu, J.-y.; Hiyoshi, H.; Do, J.-H.; Yamato, T. Synthesis and Fluorescence Emission Properties of 1,3,6,8-Tetrakis(9H-Fluoren-2-Yl)Pyrene Derivative. J. Chem. Res. 2010, 34, 278−282pl
dc.description.referencesMurray, C.; Dozova, N.; McCaffrey, J. G.; FitzGerald, S.; Shafizadeh, N.; Crépin, C. Infra-Red and Raman Spectroscopy of Free-Base and Zinc Phthalocyanines Isolated in Matrices. Phys. Chem. Chem. Phys. 2010, 12, 10406−10422.pl
dc.description.referencesSun, B.; Dreger, Z. A.; Gupta, Y. M. High-Pressure Effects in Pyrene Crystals: Vibrational Spectroscopy. J. Phys. Chem. A 2008, 112, 10546−10551.pl
dc.description.referencesSeoudi, R.; El-Bahy, G. S.; El Sayed, Z. A. FTIR, TGA and DC Electrical Conductivity Studies of Phthalocyanine and Its Complexes. J. Mol. Struct. 2005, 753, 119−126.pl
dc.description.referencesPeak, D.; Luther, G. W.; Sparks, D. L. ATR-FTIR Spectroscopic Studies of Boric Acid Adsorption on Hydrous Ferric Oxide. Geochim. Cosmochim. Acta 2003, 67, 2551−2560.pl
dc.description.referencesIshihara, K.; Lu, Y. Boronic Acid−DMAPO Cooperative Catalysis for Dehydrative Condensation between Carboxylic Acids and Amines. Chem. Sci. 2016, 7, 1276−1280.pl
dc.description.referencesShiina, I.; Ushiyama, H.; Yamada, Y.; Kawakita, Y.; Nakata, K. 4-(Dimethylamino)Pyridine N -Oxide (DMAPO): An Effective Nucleophilic Catalyst in the Peptide Coupling Reaction with 2-Methyl-6-Nitrobenzoic Anhydride. Chem. - Asian J. 2008, 3, 454−461.pl
dc.description.referencesWang, Y.; Espenson, J. H. Efficient Catalytic Conversion of Pyridine N -Oxides to Pyridine with an Oxorhenium(V) Catalyst. Org. Lett. 2000, 2, 3525−3526.pl
dc.description.referencesWang, C.; Yu, H.-Z.; Fu, Y.; Guo, Q.-X. Mechanism of Arylboronic Acid-Catalyzed Amidation Reaction between Carboxylic Acids and Amines. Org. Biomol. Chem. 2013, 11, 2140−2146.pl
dc.description.referencesArkhipenko, S.; Sabatini, M. T.; Batsanov, A. S.; Karaluka, V.; Sheppard, T. D.; Rzepa, H. S.; Whiting, A. Mechanistic Insights into Boron-Catalysed Direct Amidation Reactions. Chem. Sci. 2018, 9, 1058−1072.pl
dc.description.referencesLu, Y.; Wang, K.; Ishihara, K. Design of Boronic Acid-Base Complexes as Reusable Homogeneous Catalysts in Dehydrative Condensations between Carboxylic Acids and Amines. Asian J. Org. Chem. 2017, 6, 1191−1194.pl
dc.description.referencesPetchey, T. H. M.; Comerford, J. W.; Farmer, T. J.; Macquarrie, D. J.; Sherwood, J.; Clark, J. H. Optimization of Amidation Reactions Using Predictive Tools for the Replacement of Regulated Solvents with Safer Biobased Alternatives. ACS Sustainable Chem. Eng. 2018, 6, 1550−1554.pl
dc.description.referencesSiddiki, S. M. A. H.; Rashed, M. N.; Ali, M. A.; Toyao, T.; Hirunsit, P.; Ehara, M.; Shimizu, K. Lewis Acid Catalysis of Nb₂O₅ for Reactions of Carboxylic Acid Derivatives in the Presence of Basic Inhibitors. ChemCatChem 2019, 11, 383−396.pl
dc.description.referencesGhorpade, S. A.; Sawant, D. N.; Sekar, N. Triphenyl Borate Catalyzed Synthesis of Amides from Carboxylic Acids and Amines. Tetrahedron 2018, 74, 6954−6958.pl
dc.description.referencesSabatini, M. T.; Boulton, L. T.; Sheppard, T. D. Borate Esters: Simple Catalysts for the Sustainable Synthesis of Complex Amides. Sci. Adv. 2017, 3, No. e1701028.pl
dc.description.referencesGaudino, E. C.; Carnaroglio, D.; Nunes, M. A. G.; Schmidt, L.; Flores, E. M. M.; Deiana, C.; Sakhno, Y.; Martra, G.; Cravotto, G. Fast TiO 2 -Catalyzed Direct Amidation of Neat Carboxylic Acids under Mild Dielectric Heating. Catal. Sci. Technol. 2014, 4, 1395−1399.pl
dc.description.referencesHoulding, T. K.; Tchabanenko, K.; Rahman, M. T.; Rebrov, E. V. Direct Amide Formation Using Radiofrequency Heating. Org. Biomol. Chem. 2013, 11, 4171−4177.pl
dc.description.referencesLundberg, H.; Tinnis, F.; Adolfsson, H. Direct Amide Coupling of Non-Activated Carboxylic Acids and Amines Catalysed by Zirconium(IV) Chloride. Chem. - Eur. J. 2012, 18, 3822−3826.pl
dc.description.referencesHoang, L. T. M.; Ngo, L. H.; Nguyen, H. L.; Nguyen, H. T. H.; Nguyen, C. K.; Nguyen, B. T.; Ton, Q. T.; Nguyen, H. K. D.; Cordova, K. E.; Truong, T. An Azobenzene-Containing Metal−Organic Framework as an Efficient Heterogeneous Catalyst for Direct Amidation of Benzoic Acids: Synthesis of Bioactive Compounds. Chem. Commun. 2015, 51, 17132−17135.pl
dc.description.volume5pl
dc.description.issue11pl
dc.description.firstpage16376pl
dc.description.lastpage16387pl
dc.identifier.citation2ACS Applied Nano Materialspl
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0002-6641-026X-
dc.identifier.orcid0000-0001-8587-6711-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0002-0538-6059-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons