REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/16593
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorKurowska, Izabela-
dc.contributor.authorMarkiewicz, Karolina H.-
dc.contributor.authorNiemirowicz-Laskowska, Katarzyna-
dc.contributor.authorDestarac, Mathias-
dc.contributor.authorWielgat, Przemysław-
dc.contributor.authorMisztalewska-Turkowicz, Iwona-
dc.contributor.authorMisiak, Paweł-
dc.contributor.authorCar, Halina-
dc.contributor.authorWilczewska, Agnieszka Z.-
dc.date.accessioned2024-06-03T07:11:43Z-
dc.date.available2024-06-03T07:11:43Z-
dc.date.issued2023-
dc.identifier.citationBiomacromolecules 2023, Vol. 24 (11), p. 4854−4868pl
dc.identifier.issn1525-7797-
dc.identifier.urihttp://hdl.handle.net/11320/16593-
dc.description.abstractHerein, we report the formation of drug delivery systems from original thermoresponsive block copolymers containing lipid-based segments. Two acrylate monomers derived from palmitic- or oleic-acid−based diacylglycerols (DAGs) were synthesized and polymerized by the reversible addition−fragmentation chain transfer (RAFT) method. Well-defined DAG-based polymers with targeted molar masses and narrow molar mass distributions were next used as macro-chain transfer agents (macroCTAs) for the polymerization of N-isopropylacrylamide (NIPAAm) or N-vinylcaprolactam (NVCL). The obtained amphiphilic block copolymers were formed into polymeric nanoparticles (PNPs) with and without encapsulated doxorubicin and characterized. Their biological assessment indicated appropriate cytocompatibility with the representatives of normal cells. Furthermore, compared to the free drug, increased cytotoxicity and apoptosis or necrosis induction in breast cancer cells was documented, including a highly aggressive and invasive triple-negative MDA-MB-231 cell line.pl
dc.description.sponsorshipThis work was financially supported by the National Science Centre, Poland, grant no. NCN/2019/35/B/ST5/03391 (A.Z.W.). Analyses were performed in the Centre of Synthesis and Analysis BioNanoTechno of the University of Bialystok. The equipment in the Centre was funded by the EU as a part of the Operational Program Development of Eastern Poland 2007−2013, projects: POPW.01.03.00-20-034/09-00 and POPW.01.03.00-20-004/11. The biological part was performed at the Medical University of Bialystok SUB/1/DN/22/002/3327 (K.N.L.).pl
dc.language.isoenpl
dc.publisherACS Publicationspl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleMembrane-Active Thermoresponsive Block Copolymers Containing a Diacylglycerol-Based Segment: RAFT Synthesis, Doxorubicin Encapsulation, and Evaluation of Cytotoxicity against Breast Cancer Cellspl
dc.typeArticlepl
dc.rights.holderThis article is licensed under CC-BY 4.0pl
dc.identifier.doi10.1021/acs.biomac.3c00580-
dc.description.EmailKarolina H. Markiewicz: k.markiewicz@uwb.edu.plpl
dc.description.EmailAgnieszka Z. Wilczewska: agawilcz@uwb.edu.plpl
dc.description.AffiliationIzabela Kurowska - Faculty of Chemistry, University of Bialystokpl
dc.description.AffiliationKarolina H. Markiewicz - Faculty of Chemistry, University of Bialystokpl
dc.description.AffiliationKatarzyna Niemirowicz-Laskowska - Department of Experimental Pharmacology, Medical University of Bialystokpl
dc.description.AffiliationMathias Destarac - Laboratoire IMRCP, CNRS UMR 5623, Paul Sabatier Universitypl
dc.description.AffiliationPrzemysław Wielgat - Department of Clinical Pharmacology, Medical University of Bialystokpl
dc.description.AffiliationIwona Misztalewska-Turkowicz - Faculty of Chemistry, University of Bialystokpl
dc.description.AffiliationPaweł Misiak - − Faculty of Chemistry, University of Bialystokpl
dc.description.AffiliationHalina Car - Department of Experimental Pharmacology, Medical University of Bialystokpl
dc.description.AffiliationAgnieszka Z. Wilczewska - Faculty of Chemistry, University of Bialystokpl
dc.description.referencesSung, Y. K.; Kim, S. W. Recent Advances in Polymeric Drug Delivery Systems. Biomater. Res. 2020, 24 (1), 12.pl
dc.description.referencesKumar, R.; Santa Chalarca, C. F.; Bockman, M. R.; Bruggen, C. V.; Grimme, C. J.; Dalal, R. J.; Hanson, M. G.; Hexum, J. K.; Reineke, T. M. Polymeric Delivery of Therapeutic Nucleic Acids. Chem. Rev. 2021, 121 (18), 11527−11652pl
dc.description.referencesBochicchio, S.; Lamberti, G.; Barba, A. A. Polymer−Lipid Pharmaceutical Nanocarriers: Innovations by New Formulations and Production Technologies. Pharmaceutics 2021, 13 (2), 198.pl
dc.description.referencesWannasarit, S.; Wang, S.; Figueiredo, P.; Trujillo, C.; Eburnea, F.; Simón-Gracia, L.; Correia, A.; Ding, Y.; Teesalu, T.; Liu, D.; Wiwattanapatapee, R.; Santos, H. A.; Li, W. A Virus-Mimicking PH Responsive Acetalated Dextran-Based Membrane-Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics. Adv. Funct. Mater. 2019, 29 (51), No. 1905352.pl
dc.description.referencesAlves, A. C.; Ribeiro, D.; Nunes, C.; Reis, S. Biophysics in Cancer: The Relevance of Drug-Membrane Interaction Studies. Biochim. Biophys. Acta, Biomembr. 2016, 1858 (9), 2231−2244.pl
dc.description.referencesStewart, M. P.; Langer, R.; Jensen, K. F. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem. Rev. 2018, 118 (16), 7409−7531.pl
dc.description.referencesGoñi, F. M.; Alonso, A. Structure and Functional Properties of Diacylglycerols in Membranes1This Work Is Dedicated to Professor Vittorio Luzzati on Occasion of His 75th Birthday.1. Prog. Lipid Res. 1999, 38 (1), 1−48pl
dc.description.referencesCampomanes, P.; Zoni, V.; Vanni, S. Local Accumulation of Diacylglycerol Alters Membrane Properties Nonlinearly Due to Its Transbilayer Activity. Commun. Chem. 2019, 2 (1), 72.pl
dc.description.referencesGómez-Fernández, J. C.; Corbalán-García, S. Diacylglycerols, Multivalent Membrane Modulators. Chem. Phys. Lipids 2007, 148 (1), 1−25.pl
dc.description.referencesCarrasco, S.; Mérida, I. Diacylglycerol, When Simplicity Becomes Complex. Trends Biochem. Sci. 2007, 32 (1), 27−36.pl
dc.description.referencesEichmann, T. O.; Lass, A. DAG Tales: The Multiple Faces of Diacylglycerol-Stereochemistry, Metabolism, and Signaling. Cell. Mol. Life Sci. 2015, 72 (20), 3931−3952.pl
dc.description.referencesSchuhmacher, M.; Grasskamp, A. T.; Barahtjan, P.; Wagner, N.; Lombardot, B.; Schuhmacher, J. S.; Sala, P.; Lohmann, A.; Henry, I.; Shevchenko, A.; Coskun, Ü.; Walter, A. M.; Nadler, A. Live-Cell Lipid Biochemistry Reveals a Role of Diacylglycerol Side-Chain Composition for Cellular Lipid Dynamics and Protein Affinities. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (14), 7729−7738.pl
dc.description.referencesSen, N.; Hause, G.; Binder, W. H. Membrane Anchored Polymers Modulate Amyloid Fibrillation. Macromol. Rapid Commun. 2021, 42 (12), No. 2100120pl
dc.description.referencesWatanabe, A.; Niu, J.; Lunn, D. J.; Lawrence, J.; Knight, A. S.; Zhang, M.; Hawker, C. J. PET-RAFT as a Facile Strategy for Preparing Functional Lipid-Polymer Conjugates. J. Polym. Sci., Part A: Polym. Chem. 2018, 56 (12), 1259−1268.pl
dc.description.referencesKurowska, I.; Markiewicz, K. H.; Niemirowicz-Laskowska, K.; Misiak, P.; Destarac, M.; Wielgat, P.; Misztalewska-Turkowicz, I.; Siemiaszko, G.; Car, H.; Wilczewska, A. Z. Membrane-Active Diacylglycerol-Terminated Thermoresponsive Polymers: RAFT Synthesis and Biocompatibility Evaluation. Eur. Polym. J. 2022, 169, No. 111154.pl
dc.description.referencesDizman, B.; Elasri, M. O.; Mathias, L. J. Synthesis and Characterization of Antibacterial and Temperature Responsive Methacrylamide Polymers. Macromolecules 2006, 39 (17), 5738−5746.pl
dc.description.referencesMisiak, P.; Niemirowicz-Laskowska, K.; Markiewicz, K. H.; Misztalewska-Turkowicz, I.; Wielgat, P.; Kurowska, I.; Siemiaszko, G.; Destarac, M.; Car, H.; Wilczewska, A. Z. Evaluation of Cytotoxic Effect of Cholesterol End-Capped Poly(N-Isopropylacrylamide)s on Selected Normal and Neoplastic Cells. Int. J. Nanomed. 2020, 15, 7263−7278.pl
dc.description.referencesSiemiaszko, G.; Niemirowicz-Laskowska, K.; Markiewicz, K. H.; Misztalewska-Turkowicz, I.; Dudź, E.; Milewska, S.; Misiak, P.; Kurowska, I.; Sadowska, A.; Car, H.; Wilczewska, A. Z. Synergistic Effect of Folate-Conjugated Polymers and 5-Fluorouracil in the Treatment of Colon Cancer. Cancer Nanotechnol. 2021, 12 (1), 31.pl
dc.description.referencesMilewska, S.; Siemiaszko, G.; Wilczewska, A. Z.; MisztalewskaTurkowicz, I.; Markiewicz, K. H.; Szymczuk, D.; Sawicka, D.; Car, H.; Lazny, R.; Niemirowicz-Laskowska, K. Folic-Acid-Conjugated Thermoresponsive Polymeric Particles for Targeted Delivery of 5- Fluorouracil to CRC Cells. Int. J. Mol. Sci. 2023, 24 (2), 1364.pl
dc.description.referencesWang, H.; Li, Z.; Lu, S.; Li, C.; Zhao, W.; Zhao, Y.; Yu, S.; Wang, T.; Sun, T. Nano Micelles of Cellulose-Graft-Poly (l-Lactic Acid) Anchored with Epithelial Cell Adhesion Antibody for Enhanced Drug Loading and Anti-Tumor Effect. Mater. Today Commun. 2020, 22, No. 100764.pl
dc.description.referencesMisiak, P.; Niemirowicz-Laskowska, K.; Markiewicz, K. H.; Wielgat, P.; Kurowska, I.; Czarnomysy, R.; Misztalewska-Turkowicz, I.; Car, H.; Bielawski, K.; Wilczewska, A. Z. Doxorubicin-Loaded Polymeric Nanoparticles Containing Ketoester-Based Block and Cholesterol Moiety as Specific Vehicles to Fight Estrogen-Dependent Breast Cancer. Cancer Nanotechnol. 2023, 14 (1), 23.pl
dc.description.referencesMisiak, P.; Niemirowicz-Laskowska, K.; MisztalewskaTurkowicz, I.; Markiewicz, K. H.; Wielgat, P.; Car, H.; Wilczewska, A. Z. Doxorubicin Delivery Systems with an Acetylacetone-Based Block in Cholesterol-Terminated Copolymers: Diverse Activity against Estrogen-Dependent and Estrogen-Independent Breast Cancer Cells. Chem. Phys. Lipids 2022, 245, No. 105194pl
dc.description.referencesZhou, S.; Fan, S.; Au-yeung, S. C. F.; Wu, C. Light-Scattering Studies of Poly(N-Isopropylacrylamide) in Tetrahydrofuran and Aqueous Solution. Polymer 1995, 36 (7), 1341−1346.pl
dc.description.referencesSiirilä, J.; Häkkinen, S.; Tenhu, H. The Emulsion Polymerization Induced Self-Assembly of a Thermoresponsive Polymer Poly(N -Vinylcaprolactam). Polym. Chem. 2019, 10 (6), 766−775.pl
dc.description.referencesLee, J.-D.; Ueno, M.; Miyajima, Y.; Nakamura, H. Synthesis of Boron Cluster Lipids: Closo -Dodecaborate as an Alternative Hydrophilic Function of Boronated Liposomes for Neutron Capture Therapy. Org. Lett. 2007, 9 (2), 323−326.pl
dc.description.referencesBouton, J.; Van Hecke, K.; Van Calenbergh, S. Efficient Diastereoselective Synthesis of a New Class of Azanucleosides: 2′- Homoazanucleosides. Tetrahedron 2017, 73 (30), 4307−4316.pl
dc.description.referencesDu, W.; Kulkarni, S. S.; Gervay-Hague, J. Efficient, One-Pot Syntheses of Biologically Active α-Linked Glycolipids. Chem. Commun. 2007, 23, 2336−2338.pl
dc.description.referencesVilela, C.; Rua, R.; Silvestre, A. J. D.; Gandini, A. Polymers and Copolymers from Fatty Acid-Based Monomers. Ind. Crops Prod. 2010, 32 (2), 97−104.pl
dc.description.referencesChira, N.; Nicolescu, A.; Raluca, S.; Rosca, S. Fatty Acid Composition of Vegetable Oils Determined from C-13-NMR Spectra. Rev. Chim. 2016, 67, 1257−1263.pl
dc.description.referencesGan, H.; Hutchinson, S. A.; Hurren, C.; Liu, Q.; Wang, X.; Long, R. L. Effect of Oleic Purity on the Chemical Structure, Thermal and Rheological Properties of Bio-Based Polymers Derived from High Oleic Cottonseed Oil via RAFT Polymerization. Ind. Crops Prod. 2021, 171, No. 113882.pl
dc.description.referencesKozanoǧlu, S.; Özdemir, T.; Usanmaz, A. Polymerization of NVinylcaprolactam and Characterization of Poly(N-Vinylcaprolactam). J. Macromol. Sci. Part A 2011, 48 (6), 467−477pl
dc.description.referencesdos Santos, S.; Medronho, B.; dos Santos, T.; Antunes, F. E. Amphiphilic Molecules in Drug Delivery Systems. In Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment; Coelho, J., Ed.; Advances in Predictive, Preventive and Personalised Medicine; Springer Netherlands: Dordrecht, 2013; vol 4, pp 35−85.pl
dc.description.referencesVan Gheluwe, L.; Chourpa, I.; Gaigne, C.; Munnier, E. Polymer-Based Smart Drug Delivery Systems for Skin Application and Demonstration of Stimuli-Responsiveness. Polymers 2021, 13 (8), 1285.pl
dc.description.referencesKozlovskaya, V.; Kharlampieva, E. Self-Assemblies of Thermoresponsive Poly(N -Vinylcaprolactam) Polymers for Applications in Biomedical Field. ACS Appl. Polym. Mater. 2020, 2 (1), 26−39.pl
dc.description.referencesZhou, Y.; Yu, J.; Feng, X.; Li, W.; Wang, Y.; Jin, H.; Huang, H.; Liu, Y.; Fan, D. Reduction-Responsive Core-Crosslinked Micelles Based on a Glycol Chitosan−Lipoic Acid Conjugate for Triggered Release of Doxorubicin. RSC Adv. 2016, 6 (37), 31391−31400.pl
dc.description.referencesSarkar, P.; Ghosh, S.; Saha, R.; Sarkar, K. RAFT Polymerization Mediated Core−Shell Supramolecular Assembly of PEGMA- Co-Stearic Acid Block Co-Polymer for Efficient Anticancer Drug Delivery. RSC Adv. 2021, 11 (28), 16913−16923.pl
dc.description.referencesMitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discovery 2021, 20 (2), 101−124.pl
dc.description.referencesBlanco, E.; Shen, H.; Ferrari, M. Principles of Nanoparticle Design for Overcoming Biological Barriers to Drug Delivery. Nat. Biotechnol. 2015, 33 (9), 941−951.pl
dc.description.referencesDogra, P.; Adolphi, N. L.; Wang, Z.; Lin, Y.-S.; Butler, K. S.; Durfee, P. N.; Croissant, J. G.; Noureddine, A.; Coker, E. N.; Bearer, E. L.; Cristini, V.; Brinker, C. J. Establishing the Effects of Mesoporous Silica Nanoparticle Properties on in Vivo Disposition Using Imaging-Based Pharmacokinetics. Nat. Commun. 2018, 9 (1), 4551.pl
dc.description.referencesAmin, K.; Dannenfelser, R.-M. In Vitro Hemolysis: Guidance for the Pharmaceutical Scientist. J. Pharm. Sci. 2006, 95 (6), 1173−1176pl
dc.description.referencesTotea, G.; Ionita, D.; Demetrescu, I.; Mitache, M. M. In Vitro Hemocompatibility and Corrosion Behavior of New Zr-Binary Alloys in Whole Human Blood. Cent. Eur. J. Chem. 2014, 12 (7), 796−803.pl
dc.description.referencesDoll, D. C.; Weiss, R. B. Hemolytic Anemia Associated with Antineoplastic Agents. Cancer Treat. Rep. 1985, 69 (7−8), 777−782pl
dc.description.referencesKondo, M.; Oshita, F.; Kato, Y.; Yamada, K.; Nomura, I.; Noda, K. Early Monocytopenia after Chemotherapy as a Risk Factor for Neutropenia. Am. J. Clin. Oncol. 1999, 22 (1), 103−105pl
dc.description.referencesBousbaa, H. Novel Anticancer Strategies. Pharmaceutics 2021, 13 (2), 275.pl
dc.description.referencesBobrin, V. A.; Lin, Y.; He, J.; Qi, Y.; Gu, W.; Monteiro, M. J. Therapeutic Delivery of Polymeric Tadpole Nanostructures with High Selectivity to Triple Negative Breast Cancer Cells. Biomacromolecules 2020, 21 (11), 4457−4468.pl
dc.description.referencesMilewska, S.; Niemirowicz-Laskowska, K.; Siemiaszko, G.; Nowicki, P.; Wilczewska, A. Z.; Car, H. Current Trends and Challenges in Pharmacoeconomic Aspects of Nanocarriers as Drug Delivery Systems for Cancer Treatment. Int. J. Nanomed. 2021, 16, 6593−6644.pl
dc.description.referencesNohara, K.; Wang, F.; Spiegel, S. Glycosphingolipid Composition of MDA-MB-231 and MCF-7 Human Breast Cancer Cell Lines. Breast Cancer Res. Treat. 1998, 48 (2), 149−157.pl
dc.description.referencesGlaria, A.; Beija, M.; Bordes, R.; Destarac, M.; Marty, J.-D. Understanding the Role of ω-End Groups and Molecular Weight in the Interaction of PNIPAM with Gold Surfaces. Chem. Mater. 2013, 25 (9), 1868−1876.pl
dc.description.referencesLi, M.; De, P.; Gondi, S. R.; Sumerlin, B. S. End Group Transformations of RAFT-generated Polymers with Bismaleimides: Functional Telechelics and Modular Block Copolymers. J. Polym. Sci., Part A: Polym. Chem. 2008, 46 (15), 5093−5100.pl
dc.description.referencesReisch, A.; Klymchenko, A. S. Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging. Small 2016, 12 (15), 1968−1992.pl
dc.identifier.eissn1526-4602-
dc.description.volume24pl
dc.description.firstpage4854pl
dc.description.lastpage4868pl
dc.identifier.citation2Biomacromoleculespl
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0002-4857-0489-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0002-9718-2239-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0001-6191-6053-
dc.identifier.orcid0000-0002-6882-3519-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0001-8587-6711-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons