REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/16574
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorMarkiewicz, Karolina Halina-
dc.contributor.authorNiemirowicz-Laskowska, Katarzyna-
dc.contributor.authorSzymczuk, Dawid-
dc.contributor.authorMakarewicz, Kacper-
dc.contributor.authorMisztalewska-Turkowicz, Iwona-
dc.contributor.authorWielgat, Przemysław-
dc.contributor.authorMajcher-Fitas, Anna M.-
dc.contributor.authorMilewska, Sylwia-
dc.contributor.authorCar, Halina-
dc.contributor.authorWilczewska, Agnieszka Z.-
dc.date.accessioned2024-05-28T10:43:38Z-
dc.date.available2024-05-28T10:43:38Z-
dc.date.issued2021-
dc.identifier.citationInternational Journal of Molecular Sciences, Volume 22, Issue 9 (2021), p. 1-14pl
dc.identifier.issn1422-0067-
dc.identifier.urihttp://hdl.handle.net/11320/16574-
dc.description.abstractOne of the promising strategies for improvement of cancer treatment is application of a combination therapy. The aim of this study was to investigate the anticancer activity of nanoformulations containing doxorubicin and iron oxide particles covered with polymeric shells bearing cholesterol moieties. It was postulated that due to high affinity to cell membranes, particles comprising poly(cholesteryl acrylate) can sensitize cancer cells to doxorubicin chemotherapy. The performed analyses revealed that the developed systems are effective against the human breast cancer cell lines MCF-7 and MDA-MB-231 even at low doses of the active compound applied (0.5 µM). Additionally, high compatibility and lack of toxicity of the tested materials against human red blood cells, immune (monocytic THP-1) cells, and cardiomyocyte H9C2(2-1) cells was demonstrated. Synergistic effects observed upon administration of doxorubicin with polymer–iron oxide hybrids comprising poly(cholesteryl acrylate) may provide an opportunity to limit toxicity of the drug and to improve its therapeutic efficiency at the same time.pl
dc.description.sponsorshipThis work was financially supported by the National Science Center, Poland, grant No. NCN/2016/21/B/ST5/01365 (A.Z.W.). The analyses were performed in the Center of Synthesis and Analysis BioNanoTechno of the University of Bialystok. The equipment in the Center was funded by the EU as part of the Operational Program Development of Eastern Poland 2007–2013, projects POPW.01.03.00-20-034/09-00 and POPW.01.03.00-20-004/11.pl
dc.language.isoenpl
dc.publisherMDPIpl
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subjectpolymer–iron oxide particlespl
dc.subjectdoxorubicinpl
dc.subjectanticancer activitypl
dc.subjectcombination therapypl
dc.titleMagnetic particles with polymeric shells bearing cholesterol moieties sensitize breast cancer cells to low dose of doxorubicinpl
dc.typeArticlepl
dc.rights.holder© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) licensepl
dc.identifier.doi10.3390/ijms22094898-
dc.description.EmailKarolina H. Markiewicz: k.markiewicz@uwb.edu.plpl
dc.description.EmailKatarzyna Niemirowicz-Laskowska: katarzyna.niemirowicz@umb.edu.plpl
dc.description.EmailAgnieszka Z. Wilczewska: agawilcz@uwb.edu.plpl
dc.description.AffiliationKarolina H. Markiewicz - Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Polandpl
dc.description.AffiliationKatarzyna Niemirowicz-Laskowska - Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-361 Bialystok, Polandpl
dc.description.AffiliationDawid Szymczuk - Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Polandpl
dc.description.AffiliationKacper Makarewicz - Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Polandpl
dc.description.AffiliationIwona Misztalewska-Turkowicz - Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Polandpl
dc.description.AffiliationPrzemysław Wielgat - Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Polandpl
dc.description.AffiliationAnna M. Majcher-Fitas - Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Polandpl
dc.description.AffiliationSylwia Milewska - Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-361 Bialystok, Polandpl
dc.description.AffiliationHalina Car - Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-361 Bialystok, Polandpl
dc.description.AffiliationAgnieszka Z. Wilczewska - Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Polandpl
dc.description.referencesMiller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer Treatment and Survivorship Statistics, 2019. CA Cancer J. Clin. 2019, 69, 363–385.pl
dc.description.referencesHousman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug Resistance in Cancer: An Overview. Cancers 2014, 6, 1769–1792.pl
dc.description.referencesHasan, S.; Taha, R.; Omri, H.E. Current Opinions on Chemoresistance: An Overview. Bioinformation 2018, 14, 80–85.pl
dc.description.referencesHu, C.-M.J.; Zhang, L. Nanoparticle-Based Combination Therapy toward Overcoming Drug Resistance in Cancer. Biochem. Pharmacol. 2012, 83, 1104–1111.pl
dc.description.referencesXiao, B.; Ma, L.; Merlin, D. Nanoparticle-Mediated Co-Delivery of Chemotherapeutic Agent and SiRNA for Combination Cancer Therapy. Expert Opin. Drug Deliv. 2017, 14, 65–73.pl
dc.description.referencesLeary, M.; Heerboth, S.; Lapinska, K.; Sarkar, S. Sensitization of Drug Resistant Cancer Cells: A Matter of Combination Therapy. Cancers 2018, 10, 483.pl
dc.description.referencesAl-Lazikani, B.; Banerji, U.; Workman, P. Combinatorial Drug Therapy for Cancer in the Post-Genomic Era. Nat. Biotechnol. 2012, 30, 679–692.pl
dc.description.referencesPugazhendhi, A.; Edison, T.N.J.I.; Karuppusamy, I.; Kathirvel, B. Inorganic Nanoparticles: A Potential Cancer Therapy for Human Welfare. Int. J. Pharm. 2018, 539, 104–111.pl
dc.description.referencesSingh, A.; Sahoo, S.K. Magnetic Nanoparticles: A Novel Platform for Cancer Theranostics. Drug Discov. Today 2014, 19, 474–481.pl
dc.description.referencesPiktel, E.; Markiewicz, K.H.; Wilczewska, A.Z.; Daniluk, T.; Chmielewska, S.; Niemirowicz-Laskowska, K.; Mystkowska, J.; Paprocka, P.; Savage, P.B.; Bucki, R. Quantification of Synergistic Effects of Ceragenin CSA-131 Combined with Iron Oxide Magnetic Nanoparticles Against Cancer Cells. Int. J. Nanomed. 2020, 15, 4573–4589.pl
dc.description.referencesMisiak, P.; Niemirowicz-Laskowska, K.; Markiewicz, K.H.; Misztalewska-Turkowicz, I.; Wielgat, P.; Kurowska, I.; Siemiaszko, G.; Destarac, M.; Car, H.; Wilczewska, A.Z. Evaluation of Cytotoxic Effect of Cholesterol End-Capped Poly(N-Isopropylacrylamide)s on Selected Normal and Neoplastic Cells. Int. J. Nanomed. 2020, 15, 7263–7278.pl
dc.description.referencesMinotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol. Rev. 2004, 56, 185–229.pl
dc.description.referencesCarvalho, C.; Santos, R.; Cardoso, S.; Correia, S.; Oliveira, P.; Santos, M.; Moreira, P. Doxorubicin: The Good, the Bad and the Ugly Effect. Curr. Med. Chem. 2009, 16, 3267–3285.pl
dc.description.referencesThorn, C.F.; Oshiro, C.; Marsh, S.; Hernandez-Boussard, T.; McLeod, H.; Klein, T.E.; Altman, R.B. Doxorubicin Pathways: Pharmacodynamics and Adverse Effects. Pharmacogenet. Genom. 2011, 21, 440–446.pl
dc.description.referencesAbdullah, C.S.; Alam, S.; Aishwarya, R.; Miriyala, S.; Bhuiyan, M.A.N.; Panchatcharam, M.; Pattillo, C.B.; Orr, A.W.; Sadoshima, J.; Hill, J.A.; et al. Doxorubicin-Induced Cardiomyopathy Associated with Inhibition of Autophagic Degradation Process and Defects in Mitochondrial Respiration. Sci. Rep. 2019, 9, 2002.pl
dc.description.referencesJohnson-Arbor, K.; Dubey, R. Doxorubicin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020.pl
dc.description.referencesWilczewska, A.Z.; Markiewicz, K.H. Surface-Initiated RAFT/MADIX Polymerization on Xanthate-Coated Iron Oxide Nanoparticles. Macromol. Chem. Phys. 2014, 215, 190–197.pl
dc.description.referencesMarkiewicz, K.H.; Zembko, P.; Półtorak, K.; Misztalewska, I.; Wojtulewski, S.; Majcher, A.M.; Fornal, E.; Wilczewska, A.Z. Magnetic Nanoparticles with Chelating Shells Prepared by RAFT/MADIX Polymerization. New J. Chem 2016, 40, 9223–9231.pl
dc.description.referencesMisztalewska, I.; Wilczewska, A.Z.; Wojtasik, O.; Markiewicz, K.H.; Kuchlewski, P.; Majcher, A.M. New Acetylacetone-Polymer Modified Nanoparticles as Magnetically Separable Complexing Agents. RSC Adv. 2015, 5, 100281–100289.pl
dc.description.referencesMoskowitz, B.M.; Frankel, R.B.; Walton, S.A.; Dickson, D.P.E.; Wong, K.K.W.; Douglas, T.; Mann, S. Determination of the Preexponential Frequency Factor for Superparamagnetic Maghemite Particles in Magnetoferritin. J. Geophys. Res. Solid Earth 1997, 102, 22671–22680.pl
dc.description.referencesKim, D.K.; Zhang, Y.; Voit, W.; Rao, K.V.; Muhammed, M. Synthesis and Characterization of Surfactant-Coated Superparamagnetic Monodispersed Iron Oxide Nanoparticles. J. Magn. Magn. Mater. 2001, 225, 30–36.pl
dc.description.referencesAbbas, M.; Takahashi, M.; Kim, C. Facile Sonochemical Synthesis of High-Moment Magnetite (Fe3O4) Nanocube. J. Nanoparticle Res. 2013, 15, 1354.pl
dc.description.referencesGuivar, J.A.R.; Martínez, A.I.; Anaya, A.O.; Valladares, L.D.L.S.; Félix, L.L.; Dominguez, A.B. Structural and Magnetic Properties of Monophasic Maghemite (γ-Fe2O3) Nanocrystalline Powder. Adv. Nanoparticles 2014, 3, 114–121.pl
dc.description.referencesWeber, M.; Steinle, H.; Golombek, S.; Hann, L.; Schlensak, C.; Wendel, H.P.; Avci-Adali, M. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Front. Bioeng. Biotechnol. 2018, 6, 99.pl
dc.description.referencesWeiss, R.B. The Anthracyclines: Will We Ever Find a Better Doxorubicin? Semin. Oncol. 1992, 19, 670–686.pl
dc.description.referencesPopel, A.S.; Johnson, P.C. Microcirculation and Hemorheology. Annu. Rev. Fluid Mech. 2005, 37, 43–69.pl
dc.description.referencesKöhne, I. Haemolysis Induced by Mechanical Circulatory Support Devices: Unsolved Problems. Perfusion 2020, 35, 474–483.pl
dc.description.referencesMinasyan, H. Erythrocyte and Blood Antibacterial Defense. Eur. J. Microbiol. Immunol. 2014, 4, 138–143.pl
dc.description.referencesDoll, D.C.; Weiss, R.B. Hemolytic Anemia Associated with Antineoplastic Agents. Cancer Treat. Rep. 1985, 69, 777–782.pl
dc.description.referencesBryer, E.; Henry, D. Chemotherapy-Induced Anemia: Etiology, Pathophysiology, and Implications for Contemporary Practice. Int. J. Clin. Transfus. Med. 2018, 6, 21–31.pl
dc.description.referencesNiemirowicz, K.; Markiewicz, K.; Wilczewska, A.; Car, H. Magnetic Nanoparticles as New Diagnostic Tools in Medicine. Adv. Med. Sci. 2012, 57, 196–207.pl
dc.description.referencesWilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as Drug Delivery Systems. Pharmacol. Rep. 2012, 2012, 1020–1037.pl
dc.description.referencesJackson, J.; Leung, D.; Burt, H. The Use of Ultrasound to Increase the Uptake and Cytotoxicity of Dual Taxane and P-Glycoprotein Inhibitor Loaded, Solid Core Nanoparticles in Drug Resistant Cells. Ultrasonics 2020, 101, 106033.pl
dc.description.referencesXu, R.; Ma, J.; Sun, X.; Chen, Z.; Jiang, X.; Guo, Z.; Huang, L.; Li, Y.; Wang, M.; Wang, C.; et al. Ag Nanoparticles Sensitize IR-Induced Killing of Cancer Cells. Cell Res. 2009, 19, 1031–1034.pl
dc.description.referencesTomankova, K.; Polakova, K.; Pizova, K.; Binder, S.; Kolarova, M.; Kriegova, E.; Zapletalova, J.; Malina, L.; Horakova, J.; Malohlava, J.; et al. In Vitro Cytotoxicity Analysis of Doxorubicin-Loaded/Superparamagnetic Iron Oxide Colloidal Nanoassemblies on MCF7 and NIH3T3 Cell Lines. Int. J. Nanomed. 2015, 949.pl
dc.description.referencesAljarrah, K.; Mhaidat, N.M.; Al-Akhras, M.-A.H.; Aldaher, A.N.; Albiss, B.; Aledealat, K.; Alsheyab, F.M. Magnetic Nanoparticles Sensitize MCF-7 Breast Cancer Cells to Doxorubicin-Induced Apoptosis. World J. Surg. Oncol. 2012, 10, 62.pl
dc.description.referencesLacava, Z.G.M.; Estevanato, L.L.C.; Da Silva, J.R.; Falqueiro, A.M.; Mosiniewicz-Szablewska, E.; Suchocki, P.; Tedesco, C.A.; Morais, P.C. Co-Nanoencapsulation of Magnetic Nanoparticles and Selol for Breast Tumor Treatment: In Vitro Evaluation of Cytotoxicity and Magnetohyperthermia Efficacy. Int. J. Nanomed. 2012, 5287.pl
dc.description.referencesWang, Q.; Zhong, Y.; Liu, W.; Wang, Z.; Gu, L.; Li, X.; Zheng, J.; Du, H.; Zhong, Z.; Xie, F. Enhanced Chemotherapeutic Efficacy of the Low-Dose Doxorubicin in Breast Cancer via Nanoparticle Delivery System Crosslinked Hyaluronic Acid. Drug Deliv. 2019, 26, 12–22.pl
dc.description.volume22pl
dc.description.issue9pl
dc.description.firstpage1pl
dc.description.lastpage14pl
dc.identifier.citation2International Journal of Molecular Sciencespl
dc.identifier.orcid0000-0002-4857-0489-
dc.identifier.orcid0000-0002-3311-7147-
dc.identifier.orcid0000-0002-8225-3196-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0001-6191-6053-
dc.identifier.orcid0000-0003-3759-6058-
dc.identifier.orcid0000-0001-7921-5968-
dc.identifier.orcid0000-0002-6362-8132-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0001-8587-6711-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons