REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/16571
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorKupińska, Katarzyna-
dc.contributor.authorMichalik, Maciej-
dc.contributor.authorKrajenta, Justyna-
dc.contributor.authorBielicka, Magda-
dc.contributor.authorMarkiewicz, Karolina Halina-
dc.contributor.authorKalska-Szostko, Beata-
dc.contributor.authorWilczewska, Agnieszka Zofia-
dc.date.accessioned2024-05-28T09:33:15Z-
dc.date.available2024-05-28T09:33:15Z-
dc.date.issued2023-
dc.identifier.citationInternational Journal of Molecular Sciences, Volume 24, Issue 3 (2023), p. 1-13pl
dc.identifier.issn1422-0067-
dc.identifier.urihttp://hdl.handle.net/11320/16571-
dc.description.abstractThis study investigated the methods of preparation of zinc oxide-polypropylene nanocomposites and their antibacterial properties. Seven solutions with ZnO nanoparticles or zinc ions were formulated as a PP additive. Two methods of ZnO NPs syntheses were carried out: (1) a modified hydrothermal method where a water solution of zinc acetate dihydrate, PEI, and ammonia were mixed with a final pH 11; (2) a thermal decomposition of a water solution of zinc acetate in the presence of PEI and ammonia using a two-screw extruder. During the experiments, the influence of various amounts of particle stabilizer, heating of the solutions, and the temperatures of the syntheses were examined. As a result, the simultaneous crystallization of ZnO in the extrusion process confirmed this method’s attractiveness from the application point of view. Fabricated PP-ZnO composite shows antibacterial properties against Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae.pl
dc.language.isoenpl
dc.publisherMDPIpl
dc.relation.urihttps://creativecommons.org/licenses/by/4.0/pl
dc.rightsCreative Commons Attribution (CC BY)pl
dc.subjectpolypropylene compositespl
dc.subjectzinc oxidepl
dc.subjectantibacterial propertiespl
dc.subjectnanoparticlespl
dc.titleAn in-situ fabrication method of ZnO and other Zn(II) compounds containing polypropylene compositespl
dc.typeArticlepl
dc.rights.holder© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) licensepl
dc.identifier.doi10.3390/ijms24032357-
dc.description.EmailBeata Kalska-Szostko: kalska@uwb.edu.plpl
dc.description.EmailAgnieszka Zofia Wilczewska: agawilcz@uwb.edu.plpl
dc.description.AffiliationKatarzyna Kupińska - Panamedica Maciej Michalik, Józefa Ignacego Kraszewskiego 18/7, 15-025 Białystok, Polandpl
dc.description.AffiliationMaciej Michalik - Panamedica Maciej Michalik, Józefa Ignacego Kraszewskiego 18/7, 15-025 Białystok, Polandpl
dc.description.AffiliationJustyna Krajenta - Panamedica Maciej Michalik, Józefa Ignacego Kraszewskiego 18/7, 15-025 Białystok, Polandpl
dc.description.AffiliationMagda Bielicka - Doctoral School of Exact and Natural Sciences, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland; Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Polandpl
dc.description.AffiliationKarolina Halina Markiewicz - Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Polandpl
dc.description.AffiliationBeata Kalska-Szostko - Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Polandpl
dc.description.AffiliationAgnieszka Zofia Wilczewska - Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Polandpl
dc.description.referencesBleach, R.; Karagoz, B.; Prakash, S.M.; Davis, T.P.; Boyer, C. In Situ Formation of Polymer-Gold Composite Nanoparticles with Tunable Morphologies. ACS Macro Lett. 2014, 3, 591–596.pl
dc.description.referencesFu, S.; Sun, Z.; Huand, P.; Li, Y. Some basic aspects of polymer nanocomposites: A critical review. Nano Mater. Sci. 2019, 1, 2–30.pl
dc.description.referencesTorres, F.G.; Saavedra, A.C. A comparison between the failure modes observed in biological and synthetic polymer nanocomposites. Polym.-Plast. Technol. Mater. 2019, 59, 241–270.pl
dc.description.referencesTorabi, N.; Behjat, A.; Shahpari, M.; Edalati, S. Development of a Silver/Polymer Nanocomposite Interconnection Layer for Organic Tandem Solar Cells. J. Nanophotonics 2015, 9, 093049.pl
dc.description.referencesAwang, M.; Wan Mohd, W.R. Comparative Studies of Titanium Dioxide and Zinc Oxide as a Potential Filler in Polypropylene Reinforced Rice Husk Composite. IOP Conf. Ser. Mater. Sci. Eng. 2018, 342, 012046.pl
dc.description.referencesErem, A.D.; Ozcan, G.; Skrifvars, M. In Vitro Assessment of Antimicrobial Polypropylene/Zinc Oxide Nanocomposite Fibers. Text. Res. J. 2013, 83, 2152–2163.pl
dc.description.referencesPuspasari, V.; Ridhova, A.; Hermawan, A.; Amal, M.I.; Khan, M.M. ZnO-based antimicrobial coatings for biomedical applications. Bioprocess Biosyst Eng. 2022, 45, 1421–1445.pl
dc.description.referencesSunada, K.; Minoshima, M.; Hashimoto, K. Highly Efficient Antiviral and Antibacterial Activities of Solid-State Cuprous Compounds. J. Hazard. Mater. 2012, 235–236, 265–270.pl
dc.description.referencesSportelli, M.C.; Izzi, M.; Loconsole, D.; Sallustio, A.; Picca, R.A.; Felici, R.; Chironna, M.; Cioffi, N. On the Efficacy of ZnO Nanostructures against SARS-CoV-2. Int. J. Mol. Sci. 2022, 23, 3040.pl
dc.description.referencesMontazer, M.; Amiri, M.M. ZnO Nano Reactor on Textiles and Polymers: Ex-Situ ZnO Nano Reactor on Textiles and Polymers: Ex-Situ and In-Situ Synthesis, Application and Characterization.pl
dc.description.referencesCazón, P.; Vázquez, M. Improving bacterial cellulose films by ex-situ and in-situ modifications: A review. Food Hydrocoll. 2021, 113, 106514.pl
dc.description.referencesBecheri, A.; Dürr, M.; Lo Nostro, P.; Baglioni, P. Synthesis and Characterization of Zinc Oxide Nanoparticles: Application to Textiles as UV-Absorbers. J. Nanoparticle Res. 2008, 10, 679–689.pl
dc.description.referencesVigneshwaran, N.; Nachane, R.P.; Balasubramanya, R.H.; Varadarajan, P.V. A Novel One-Pot “green” Synthesis of Stable Silver Nanoparticles Using Soluble Starch. Carbohydr. Res. 2006, 341, 2012–2018.pl
dc.description.referencesMao, Z.; Shi, Q.; Zhang, L.; Cao, H. The Formation and UV-Blocking Property of Needle-Shaped ZnO Nanorod on Cotton Fabric. Thin Solid Film. 2009, 517, 2681–2686.pl
dc.description.referencesHejazi, I.; Hajalizadeh, B.; Seyfi, J.; Sadeghi, G.M.M.; Jafari, S.H.; Khonakdar, H.A. Role of Nanoparticles in Phase Separation and Final Morphology of Superhydrophobic Polypropylene/Zinc Oxide Nanocomposite Surfaces. Appl. Surf. Sci. 2014, 293, 116–123.pl
dc.description.referencesKathirvelu, S.; D’Souza, L.; Dhurai, B. UV Protection Finishing of Textiles Using ZnO Nanoparticles. Indian J. Fibre Text. Res. 2009, 34, 267–273.pl
dc.description.referencesNisansala, D.; Rajapaksha, G.K.M.; Dikella, D.; Dheerasinghe, M.; Sirimuthu, N.; Patabendige, C. Zinc Oxide Nanostructures in the Textile Industry. Indian J. Sci. Technol. 2021, 14, 3370–3395.pl
dc.description.referencesVigneshwaran, N.; Kumar, S.; Kathe, A.A.; Varadarajan, P.V.; Prasad, V. Functional Finishing of Cotton Fabrics Using Zinc Oxide-Soluble Starch Nanocomposites. Nanotechnology 2006, 17, 5087–5095.pl
dc.description.referencesBaruah, S.; Thanachayanont, C.; Dutta, J. Growth of ZnO Nanowires on Nonwoven Polyethylene Fibers. Sci. Technol. Adv. Mater. 2008, 9, 025009.pl
dc.description.referencesFiedot-Toboła, M.; Ciesielska, M.; Maliszewska, I.; Rac-Rumijowska, O.; Suchorska-Woźniak, P.; Teterycz, H.; Bryjak, M. Deposition of Zinc Oxide on Different Polymer Textiles and Their Antibacterial Properties. Materials 2018, 11, 707.pl
dc.description.referencesAnita, S. Preparation, Characterization and Functional Analysis of Zinc Oxide Nanoparticles Coated Single Jersey Cotton Fabric. J. Text. Sci. Eng. 2012, 02, 1–5.pl
dc.description.referencesColmenares, J.C.; Kuna, E.; Jakubiak, S.; Michalski, J.; Kurzydłowski, K. Polypropylene Nonwoven Filter with Nanosized ZnO Rods: Promising Hybrid Photocatalyst for Water Purification. Appl. Catal. B Environ. 2015, 170–171, 273–282.pl
dc.description.referencesJakubiak, S.; Tomaszewska, J.; Jackiewicz, A.; Michalski, J.; Kurzydłowski, K.J. Polypropylene—Zinc Oxide Nanorod Hybrid Material for Applications in Separation Processes. Chem. Process Eng. 2016, 37, 393–403.pl
dc.description.referencesLee, S. Developing UV-Protective Textiles Based on Electrospun Zinc Oxide Nanocomposite Fibers. Fibers Polym. 2009, 10, 295–301.pl
dc.description.referencesKim, H.J.; Pant, H.R.; Park, C.H.; Tijing, L.D.; Hwang, B.S.; Choi, N.J.; Kim, C.S. Electrical Properties of ZnO/Nylon-6 SpiderWave-like Nanonets Prepared via Electrospinning. Dig. J. Nanomater. Biostructures 2013, 8, 385–393.pl
dc.description.referencesRavindra, D.K. Polyester Nanocomposite Fibers with Antibacterial Properties. Adv. Appl. Sci. Res. 2011, 2, 491–502.pl
dc.description.referencesZhang, J.; Wen, B.; Wang, F.; Ding, Y.; Zhang, S.; Yang, M. In Situ Synthesis of ZnO Nanocrystal/PET Hybrid Nanofibers via Electrospinning. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 1360–1368.pl
dc.description.referencesMontazer, M.; Amiri, M.M.; Mohammad Ali Malek, R. In Situ Synthesis and Characterization of Nano ZnO on Wool: Influence of Nano Photo Reactor on Wool Properties. Photochem. Photobiol. 2013, 89, 1057–1063.pl
dc.description.referencesFayaz, A.M.; Balaji, K.; Kalaichelvan, P.T.; Venkatesan, R. Fungal based synthesis of silver nanoparticles—An effect of temperature on the size of particles. Colloids Surf. B Biointerfaces 2009, 74, 123–126.pl
dc.description.referencesAmara, H.; Nelayah, J.; Creuze, J.; Chmielewski, A.; Alloyeau, D.; Ricolleau, C.; Legrand, B. Is There Really a Size effect on the Surface Energy of Nanoparticles? 2021. Available online: http://dx.doi.org/10.13140/RG.2.2.26218.85446 (accessed on 10 January 2023).pl
dc.description.referencesKulpa-Greszta, M.; Tomaszewska, A.; Dziedzic, A.; Pązik, R. Rapid hot-injection as a tool for control of magnetic nanoparticle size and morphology. RSC Adv. 2021, 11, 20708–20719.pl
dc.description.referencesBindu, P.; Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 2014, 8, 123–134.pl
dc.description.referencesSchmitt, M. Synthesis and testing of ZnO nanoparticles for photo-initiation: Experimental observation of two different nonmigration initiators for bulk polymerization. Nanoscale 2015, 7, 9532.pl
dc.description.referencesSchmitt, M.; Lalevée, J. ZnO nanoparticles as polymerisation photo-initiator: Levulinic acid/NaOH content variation. Colloids Surf. A 2017, 532, 189–194.pl
dc.description.referencesWagner, M. Thermal Analysis in Practice: Fundamental Aspects; Carl Hanser Verlag GmbH & Co. KG: München, Germany, 2017.pl
dc.description.volume24pl
dc.description.issue3pl
dc.description.firstpage1pl
dc.description.lastpage13pl
dc.identifier.citation2International Journal of Molecular Sciencespl
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0002-4857-0489-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0001-8587-6711-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja jest chroniona prawem autorskim (Copyright © Wszelkie prawa zastrzeżone)