REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/16423
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorPietrucha, Barbara-
dc.contributor.authorHeropolitanska-Pliszka, Edyta-
dc.contributor.authorMaciejczyk, Mateusz-
dc.contributor.authorCar, Halina-
dc.contributor.authorSawicka-Powierza, Jolanta-
dc.contributor.authorMotkowski, Radosław-
dc.contributor.authorKarpińska, Joanna-
dc.contributor.authorHryniewicka, Marta-
dc.contributor.authorZalewska, Anna-
dc.contributor.authorPac, Malgorzata-
dc.contributor.authorWolska-Kusnierz, Beata-
dc.contributor.authorBernatowska, Ewa-
dc.contributor.authorMikoluc, Bozena-
dc.date.accessioned2024-04-22T06:54:23Z-
dc.date.available2024-04-22T06:54:23Z-
dc.date.issued2017-
dc.identifier.citationOxidative Medicine and Cellular Longevity, Volume 2017, Article ID 6745840, p. 1-8pl
dc.identifier.issn1942-0900-
dc.identifier.urihttp://hdl.handle.net/11320/16423-
dc.description.abstractThis study compared the antioxidant status and major lipophilic antioxidants in patients with ataxia-telangiectasia (AT) and Nijmegen breakage syndrome (NBS). Total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), and concentrations of coenzyme Q10 (CoQ10) and vitamins A and E were estimated in the plasma of 22 patients with AT, 12 children with NBS, and the healthy controls. In AT patients, TAS (median 261.7 μmol/L) was statistically lower but TOS (496.8 μmol/L) was significantly elevated in comparison with the healthy group (312.7 μmol/L and 311.2 μmol/L, resp.). Tocopherol (0.8 μg/mL) and CoQ10 (0.1 μg/mL) were reduced in AT patients versus control (1.4 μg/mL and 0.3 μg/mL, resp.). NBS patients also displayed statistically lower TAS levels (290.3 μmol/L), while TOS (404.8 μmol/L) was comparable to the controls. We found that in NBS patients retinol concentration (0.1 μg/mL) was highly elevated and CoQ10 (0.1 μg/mL) was significantly lower in comparison with those in the healthy group. Our study confirms disturbances in redox homeostasis in AT and NBS patients and indicates a need for diagnosing oxidative stress in those cases as a potential disease biomarker. Decreased CoQ10 concentration found in NBS and AT indicates a need for possible supplementation.pl
dc.description.sponsorshipThe investigation was supported by Grant nos. 143-26591L and N/ST/ZB/16/001/1126 from the Medical University in Bialystok.pl
dc.language.isoenpl
dc.publisherHindawipl
dc.rightsCC BY 4.0 DEED Attribution 4.0 International*
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleComparison of Selected Parameters of Redox Homeostasis in Patients with Ataxia-Telangiectasia and Nijmegen Breakage Syndromepl
dc.typeArticlepl
dc.rights.holderCopyright © 2017 Barbara Pietrucha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.pl
dc.identifier.doi10.1155/2017/6745840-
dc.description.EmailBozena Mikoluc: bozenam@mp.plpl
dc.description.AffiliationBarbara Pietrucha - Clinical Immunology, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Polandpl
dc.description.AffiliationEdyta Heropolitanska-Pliszka - Clinical Immunology, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Polandpl
dc.description.AffiliationMateusz Maciejczyk - Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37 Str., 15-295 Bialystok, Polandpl
dc.description.AffiliationHalina Car - Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37 Str., 15-295 Bialystok, Polandpl
dc.description.AffiliationJolanta Sawicka-Powierza - Department of Family Medicine, Medical University of Bialystok, Bialystok, Polandpl
dc.description.AffiliationRadosław Motkowski - Department of Pediatrics Rheumatology, Immunology, and Metabolic Bone Diseases, Medical University of Bialystok, Waszyngtona 17 Str., 15-274 Bialystok, Polandpl
dc.description.AffiliationJoanna Karpińska - Institute of Chemistry, University of Bialystok, Bialystok, Polandpl
dc.description.AffiliationMarta Hryniewicka - Institute of Chemistry, University of Bialystok, Bialystok, Polandpl
dc.description.AffiliationAnna Zalewska - Department of Conservative Dentistry, Medical University of Bialystok, Bialystok, Polandpl
dc.description.AffiliationMalgorzata Pac - Clinical Immunology, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Polandpl
dc.description.AffiliationBeata Wolska-Kusnierz - Clinical Immunology, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Polandpl
dc.description.AffiliationEwa Bernatowska - Clinical Immunology, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Polandpl
dc.description.AffiliationBozena Mikoluc - Department of Pediatrics Rheumatology, Immunology, and Metabolic Bone Diseases, Medical University of Bialystok, Waszyngtona 17 Str., 15-274 Bialystok, Polandpl
dc.description.referencesM. Maciejczyk, B. Mikoluc, B. Pietrucha et al., “Oxidative stress, mitochondrial abnormalities and antioxidant defense in ataxia-telangiectasia, bloom syndrome and Nijmegen breakage syndrome,” Redox Biology, vol. 11, pp. 375–383, 2017.pl
dc.description.referencesF. V. Pallardó, A. Lloret, M. Lebel et al., “Mitochondrial dysfunction in some oxidative stress-related genetic diseases: ataxia-telangiectasia, down syndrome, Fanconi anaemia and Werner syndrome,” Biogerontology, vol. 11, no. 4, pp. 401–419, 2010.pl
dc.description.referencesM. Ambrose, J. V. Goldstine, and R. A. Gatti, “Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells,” Human Molecular Genetics, vol. 16, no. 18, pp. 2154–2164, 2007.pl
dc.description.referencesJ. S. Eaton, Z. P. Lin, A. C. Sartorelli, N. D. Bonawitz, and G. S. Shadel, “Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis,” The Journal of Clinical Investigation, vol. 117, no. 9, pp. 2723–2734, 2007.pl
dc.description.referencesK. H. Chrzanowska, W. J. Kleijer, M. Krajewska-Walasek et al., “Eleven Polish patients with microcephaly, immunodeficiency, and chromosomal instability: the Nijmegen breakage syndrome,” American Journal of Medical Genetics, vol. 57, no. 3, pp. 462–471, 1995.pl
dc.description.referencesS. Mizutani and M. Takagi, “XCIND as a genetic disease of X-irradiation hypersensitivity and cancer susceptibility,” International Journal of Hematology, vol. 97, no. 1, pp. 37–42, 2013.pl
dc.description.referencesS. Squadrone, P. Brizio, C. Mancini et al., “Blood metal levels and related antioxidant enzyme activities in patients with ataxia telangiectasia,” Neurobiology of Disease, vol. 81, pp. 162–167, 2015.pl
dc.description.referencesM. Semlitsch, R. E. Shackelford, S. Zirkl, W. Sattler, and E. Malle, “ATM protects against oxidative stress induced by oxidized low-density lipoprotein,” DNA Repair, vol. 10, no. 8, pp. 848–860, 2011.pl
dc.description.referencesU. Weyemi, C. E. Redon, T. Aziz et al., “NADPH oxidase 4 is a critical mediator in ataxia telangiectasia disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 7, pp. 2121–2126, 2015.pl
dc.description.referencesH. Krenzlin, I. Demuth, B. Salewsky et al., “DNA damage in Nijmegen breakage syndrome cells leads to PARP hyperactivation and increased oxidative stress,” PLoS Genetics, vol. 8, no. 3, article e1002557, 2012.pl
dc.description.referencesY. A. Valentin-Vega, K. H. MacLean, J. Tait-Mulder et al., “Mitochondrial dysfunction in ataxia-telangiectasia,” Blood, vol. 119, no. 6, pp. 1490–1500, 2012.pl
dc.description.referencesJ. Borys, M. Maciejczyk, A. J. Krȩtowski et al., “The redox balance in erythrocytes, plasma, and periosteum of patients with titanium fixation of the jaw,” Frontiers in Physiology, vol. 8, 2017.pl
dc.description.referencesJ. Karpińska, B. Mikołuć, R. Motkowski, and J. PiotrowskaJastrzebska, “HPLC method for simultaneous determination of retinol, α-tocopherol and coenzyme Q10 in human plasma,” Journal of Pharmaceutical and Biomedical Analysis, vol. 42, no. 2, pp. 232–236, 2006.pl
dc.description.referencesO. I. Aruoma, “Free radicals, oxidative stress, and antioxidants in human health and disease,” Journal of the American Oil Chemists' Society, vol. 75, no. 2, pp. 199–212, 1998.pl
dc.description.referencesM. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” The International Journal of Biochemistry & Cell Biology, vol. 39, no. 1, pp. 44–84, 2007.pl
dc.description.referencesB. Uttara, A. V. Singh, P. Zamboni, and R. T. Mahajan, “Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options,” Current Neuropharmacology, vol. 7, no. 1, pp. 65–74, 2009.pl
dc.description.referencesA. Arikanoglu, E. Akil, S. Varol et al., “Relationship of cognitive performance with prolidase and oxidative stress in Alzheimer disease,” Neurological Sciences, vol. 34, no. 12, pp. 2117–2121, 2013.pl
dc.description.referencesA. Kirbas, S. Kirbas, M. C. Cure, and A. Tufekci, “Paraoxonase and arylesterase activity and total oxidative/anti-oxidative status in patients with idiopathic Parkinson’s disease,” Journal of Clinical Neuroscience, vol. 21, no. 3, pp. 451–455, 2014.pl
dc.description.referencesM. Y. Sherman and A. L. Goldberg, “Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases,” Neuron, vol. 29, no. 1, pp. 15–32, 2001.pl
dc.description.referencesT. B. Shea, Y. L. Zheng, D. Ortiz, and H. C. Pant, “Cyclindependent kinase 5 increases perikaryal neurofilament phosphorylation and inhibits neurofilament axonal transport in response to oxidative stress,” Journal of Neuroscience Research, vol. 76, no. 6, pp. 795–800, 2004.pl
dc.description.referencesA. K. Verma, J. Raj, V. Sharma, T. B. Singh, S. Srivastava, and R. Srivastava, “Plasma Prolidase activity and oxidative stress in patients with Parkinson’s disease,” Parkinson's Disease, vol. 2015, Article ID 598028, 6 pages, 2015.pl
dc.description.referencesC. Rice-Evans and N. J. Miller, “Total antioxidant status in plasma and body fluids,” Methods in Enzymology, vol. 234, pp. 279–293, 1994.pl
dc.description.referencesL. Ernster and G. Dallner, “Biochemical, physiological and medical aspects of ubiquinone function,” Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1271, no. 1, pp. 195–204, 1995.pl
dc.description.referencesH. N. Bhagavan and R. K. Chopra, “Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics,” Free Radical Research, vol. 40, no. 5, pp. 445–453, 2006.pl
dc.description.referencesS. Farough, A. Karaa, M. A. Walker et al., “Coenzyme Q10 and immunity: a case report and new implications for treatment of recurrent infections in metabolic diseases,” Clinical Immunology, vol. 155, no. 2, pp. 209–212, 2014.pl
dc.description.referencesJ. Garrido-Maraver, M. D. Cordero, M. Oropesa-Ávila et al., “Coenzyme Q10 therapy,” Molecular Syndromology, vol. 5, no. 3-4, pp. 187–197, 2014.pl
dc.description.referencesI. P. Hargreaves, “Coenzyme Q10 as a therapy for mitochondrial disease,” The International Journal of Biochemistry & Cell Biology, vol. 49, pp. 105–111, 2014.pl
dc.description.referencesC. Lamperti, M. H. a Naini, D. C. De Vivo et al., “Cerebellar ataxia and coenzyme Q10 deficiency,” Neurology, vol. 60, no. 7, pp. 1206–1208, 2003.pl
dc.description.referencesR. Montero, M. Pineda, A. Aracil et al., “Clinical, biochemical and molecular aspects of cerebellar ataxia and coenzyme Q10 deficiency,” Cerebellum, vol. 6, no. 2, pp. 118–122, 2007.pl
dc.description.referencesJ. A. Drisko, “The use of antioxidants in transmissible spongiform encephalopathies: a case report,” Journal of the American College of Nutrition, vol. 21, no. 1, pp. 22–25, 2002.pl
dc.description.referencesD. Q. Pham and R. Plakogiannis, “Vitamin E supplementation in Alzheimer’s disease, Parkinson’s disease, tardive dyskinesia, and cataract: part 2,” The Annals of Pharmacotherapy, vol. 39, no. 12, pp. 2065–2072, 2005.pl
dc.description.referencesC. Ramassamy, “Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets,” European Journal of Pharmacology, vol. 545, no. 1, pp. 51–64, 2006.pl
dc.description.referencesD. Brambilla, C. Mancuso, M. R. Scuderi et al., “The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: a point of view for an assessment of the risk/benefit profile,” Nutrition Journal, vol. 7, no. 1, p. 29, 2008.pl
dc.description.referencesS. Jayadev and T. D. Bird, “Hereditary ataxias: overview,” Genetics in Medicine, vol. 15, no. 9, pp. 673–683, 2013.pl
dc.description.referencesS. Rizvi, S. T. Raza, F. Ahmed, A. Ahmad, S. Abbas, and F. Mahdi, “The role of vitamin E in human health and some diseases,” Sultan Qaboos University Medical Journal, vol. 14, no. 2, pp. 157–165, 2014.pl
dc.description.referencesA. Lloret, R. Calzone, C. Dunster et al., “Different patterns of in vivo pro-oxidant states in a set of cancer- or aging-related genetic diseases,” Free Radical Biology & Medicine, vol. 44, no. 4, pp. 495–503, 2008.pl
dc.description.referencesJ. Reichenbach, R. Schubert, C. Schwan, K. Müller, H. J. Böhles, and S. Zielen, “Anti-oxidative capacity in patients with ataxia telangiectasia,” Clinical and Experimental Immunology, vol. 117, no. 3, pp. 535–539, 1999.pl
dc.description.referencesR. da Silva, E. C. dos Santos-Valente, F. Burim Scomparini, R. O. Saccardo Sarni, and B. T. Costa-Carvalho, “The relationship between nutritional status, vitamin a and zinc levels and oxidative stress in patients with ataxia-telangiectasia,” Allergologia et Immunopathologia, vol. 42, no. 4, pp. 329–335, 2014.pl
dc.identifier.eissn1942-0994-
dc.description.firstpage1pl
dc.description.lastpage8pl
dc.identifier.citation2Oxidative Medicine and Cellular Longevitypl
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons