Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/16409
Pełny rekord metadanych
Pole DC | Wartość | Język |
---|---|---|
dc.contributor.author | Kiszkiel-Taudul, Ilona | - |
dc.contributor.author | Starczewska, Barbara | - |
dc.contributor.author | Karpińska, Joanna | - |
dc.contributor.author | Kasabuła, Monika | - |
dc.date.accessioned | 2024-04-19T08:38:35Z | - |
dc.date.available | 2024-04-19T08:38:35Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Journal of Surfactants and Detergents, Volume 20, Issue 6 (2017), p. 1401–1409 | pl |
dc.identifier.issn | 1097-3958 | - |
dc.identifier.uri | http://hdl.handle.net/11320/16409 | - |
dc.description.abstract | Micellar extraction was applied to isolate famotidine from aqueous samples. This drug is an H2 receptor antagonist used for the treatment of stomach diseases. The process was performed with a mixture of anionic sodium dodecylsulfate and nonionic Triton X-114 surfactants. The effect of different parameters on the efficiency of the micellar extraction such as electrolyte and surfactant concentration, pH of sample, temperature, shaking and centrifugation time was investigated. The influence of foreign substances on a studied process was tested. The elaborated procedure was applied for HPLC–UV determination of famotidine in natural water samples. The calibration graph was recorded in the range 1.35–37.12 lg mL-1 of the studied compound. The repeatability of the method was equal to 7.4%. The limit of detection and quantification values for the determination of famotidine by using the proposed method amounted to 0.40 and 1.25 lg mL-1 , respectively. | pl |
dc.description.sponsorship | This work was financially supported by the Ministry of Science and Higher Education (Grant: NN305189435). Author Ilona Kiszkiel-Taudul was a beneficiary of the project Scholarships for PhD students of Podlaskie Voivodeship. The project was co-financed by European Social Fund, Polish Government and Podlaskie Voivodeship. | pl |
dc.language.iso | en | pl |
dc.publisher | Springer | pl |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Famotidine | pl |
dc.subject | SDS | pl |
dc.subject | Triton X-114 | pl |
dc.subject | Micellar extraction | pl |
dc.subject | Surface water analysis | pl |
dc.subject | HPLC–UV | pl |
dc.title | Application of Micellar Extraction for Isolation of Famotidine from Aqueous Samples Prior to its Chromatographic Determination | pl |
dc.type | Article | pl |
dc.rights.holder | Creative Commons Attribution 4.0 International License | pl |
dc.identifier.doi | 10.1007/s11743-017-2003-3 | - |
dc.description.Email | Ilona Kiszkiel-Taudul: i.kiszkiel@uwb.edu.pl | pl |
dc.description.Biographicalnote | Dr. ILONA KISZKIEL-TAUDUL is an academic assistant at Institute of Chemistry (Biological–Chemical Department, University of Bialystok). The performed studies by Dr. Taudul are relative to elaboration of new extraction methods for isolation of biologically active compounds from environmental samples. The procedures are applied to the determination of these analytes using spectrophotometric and chromatographic methods with different kinds of detection. | pl |
dc.description.Biographicalnote | Professor BARBARA STARCZEWSKA works at Institute of Chemistry (Biological–Chemical Department, University of Bialystok). Her studies are relative to elaboration of new extraction procedures for isolation of organic compounds from food and environmental samples. The techniques are applied to the determination of analytes using liquid chromatography method with different kinds of detection (especially connected with tandem mass spectrometry). | pl |
dc.description.Biographicalnote | Professor JOANNA KARPIŃSKA works at Institute of Chemistry (Biological–Chemical Department, University of Bialystok). Her studies are relative to elaboration of new microextraction techniques for isolation of organic compounds from environmental samples. The procedures are applied to the determination of analytes using gas chromatography and liquid chromatography methods with different kinds of detection (especially connected with tandem mass spectrometry). | pl |
dc.description.Biographicalnote | MONIKA KASABUŁA studies at Institute of Chemistry (Biological–Chemical Department, University of Bialystok) and her studies were relative to elaboration of micellar extraction for isolation of antihistaminic drugs from surface water samples and their determination using spectrophotometric and chromatographic methods with different kinds of detection. | pl |
dc.description.Affiliation | Ilona Kiszkiel-Taudul - Institute of Chemistry, University of Bialystok, 15-245 Białystok, Poland | pl |
dc.description.Affiliation | Barbara Starczewska - Institute of Chemistry, University of Bialystok, 15-245 Białystok, Poland | pl |
dc.description.Affiliation | Joanna Karpińska - Institute of Chemistry, University of Bialystok, 15-245 Białystok, Poland | pl |
dc.description.Affiliation | Monika Kasabuła - Institute of Chemistry, University of Bialystok, 15-245 Białystok, Poland | pl |
dc.description.references | Gürkan R., Aksoy Ü., Ulusoy HÍ., Akçay M., Determination of low levels of molybdenum (VI) in food samples and beverages by cloud point extraction coupled with flame atomic absorption spectrometry. J Food Compos Anal. 2013;32:74–82. | pl |
dc.description.references | Ulusoy HÍ., Determination of trace uranyl ions in aquatic medium by a useful and simple method. J Radioanal Nucl Chem. 2014; 302:497–504 | pl |
dc.description.references | Ulusoy HÍ., Determination of trace inorganic mercury species in water samples by cloud point extraction and UV–Vis spectrophotometry. J AOAC Int. 2014;97:238–44. | pl |
dc.description.references | Ulusoy HÍ., Aksoy Ü, Akçay M., Simultaneous pre-concentration of Pb and Sn in food samples and determination by atomic absorption spectrometry. Eur Food Res Technol. 2013;236:725–33. | pl |
dc.description.references | Sosa-Ferrera Z., Padrón-Sanz C., Mahugo-Santana C., Santana-Rodríguez J.J. The use of micellar systems in the extraction and pre-concentration of organic pollutants in environmental samples. Trends Anal Chem. 2004;23:469–79. | pl |
dc.description.references | Paleologos EK, Giokas DL, Karayannis MI. Micelle-mediated separation and cloud-point extraction. Trends Anal Chem. 2005; 24:426–36. | pl |
dc.description.references | Chen H., Wang P., Ding W., Using liquid chromatography-ion trap mass spectrometry to determine pharmaceutical residues in Taiwanese rivers and wastewaters. Chemosphere. 2008; 72:863–9. | pl |
dc.description.references | Kot-Wasik A., Dębska J., Namieśnik J., Analytical techniques in studies of the environmental fate of pharmaceuticals and personal-care products. Trends Anal Chem. 2007;26:557–68. | pl |
dc.description.references | Kim I., Yamashita N., Tanaka H., Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. J Hazard Mater. 2009;166:1134–40. | pl |
dc.description.references | Grujić S., Vasiljević T., Laušević M., Determination of multiple pharmaceutical classes in surface and ground waters by liquid chromatography-ion trap-tandem mass spectrometry. J Chromatogr A. 2009;1216:4989–5000. | pl |
dc.description.references | Basit AW., Michael-Newton J., Lacey LF. Susceptibility of the H2-receptor antagonists cimetidine, famotidine and nizatidine, to metabolism by the gastrointestinal microflora. Int J Pharm. 2002;237:23–33. | pl |
dc.description.references | Shoaib MH., Siddiqi SA., Yousuf RI., Zaheer K., Hanif M., Rehana S., Jabeen S., Development and evaluation of hydrophilic colloid matrix of famotidine tablets. AAPS Pharm Sci Tech. 2010;11:708–18. | pl |
dc.description.references | Campanero MA., Bueno I., Arangoa MA., Escolar M., Quetglás EG., López-Ocáriz A, Azanza JR. Improved selectivity in detection of polar basic drugs by liquid chromatography-electrospray ionization mass spectrometry. Illustration using an assay method for the determination of famotidine in human plasma. J Chromatogr B. 2001;763:21–33. | pl |
dc.description.references | Skrzypek S., Ciesielski W., Sokołowski A., Yilmaz S., Kaźmierczak D., Square wave adsorptive stripping voltammetric determination of famotidine in urine. Talanta. 2005;66:1146–51. | pl |
dc.description.references | Zarghi A., Shafaati A., Foroutan SM., Khoddam A., Development of rapid HPLC method for determination of famotidine in human plasma using a monolithic column. J Pharm Biomed Anal. 2005; 39:677–80. | pl |
dc.description.references | Cheng W., Lin S., Famotidine polymorphic transformation in the grinding process significantly depends on environmental humidity or water content. Int J Pharm. 2008;357:164–8. | pl |
dc.description.references | Onoa GB., Moreno V., Palladium and platinum famotidine complexes. J Inorg Biochem. 1998;72:141–53. | pl |
dc.description.references | Abu Zuhri AZ., Shubietah RM., Badah GM., Extractional-spectrophotometric determination of famotidine in pharmaceutical formulations. J Pharm Biomed Anal. 1999; 21:459–65. | pl |
dc.description.references | Miodragović DU., Bogdanović GA., Miodragović ZM., Radulović MÐ., Novaković SB., Kaluderović GN., Kozłowski H., Interesting coordination abilities of antiulcer drug famotidine and antimicrobial activity of drug and its cobalt(III) complex. J Inorg Biochem. 2006;100:1568–74. | pl |
dc.description.references | Radjenović J., Petrović M., Barceló D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Wat Res. 2009; 43:831–41. | pl |
dc.description.references | Lin AY., Yu T., Lin C., Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere. 2008;74:131–41. | pl |
dc.description.references | Terzić S., Senta I., Ahel M., Gros M., Petrović M., Barcelo D., Müller J., Knepper T., Martü I., Ventura F., Jovančić P., Jabučar D., Occurrence and fate of emerging wastewater contaminants in Western Balkan Region. Sci Total Environ. 2008;399:66–77. | pl |
dc.description.references | Jelic A., Gros M., Ginebreda A., Cespedes-Sánchez R., Ventura F., Petrovic M., Barcelo D., Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Wat Res. 2011; 45:1165–76. | pl |
dc.description.references | Varga R., Somogyvári I., Eke Z., Torkos K., Determination of antihypertensive and anti-ulcer agents from surface water with solid-phase extraction-liquid-chromatography electrospray ionization tandem mass spectrometry. Talanta. 2011;83:1447–54. | pl |
dc.description.references | Jia G., Li L., Qiu J., Wang X., Zhu W., Sun Y., Zhou Z., Determination of carbaryl and its metabolite 1-naphthol in water samples by fluorescence spectrophotometer after anionic surfactant micelle-mediated extraction with sodium dodecylsulfate. Spectrochim Acta A. 2007;67:460–4. | pl |
dc.description.references | Wang Z., The potential of cloud point system as a novel twophase partitioning system for biotransformation. Appl Microbiol Biotechnol. 2007;75:1–10. | pl |
dc.description.references | Kiszkiel I., Starczewska B., Kasabuła M., Hryniewicka M., Extraction methods for isolation of famotidine from aqueous solutions. In: Hubicki Z, editor. Science and industry—spectroscopic methods in practice, new challenge and possibilities. Lublin: University of Marie Skłodowska-Curie; 2010. p. 305–8. | pl |
dc.description.references | Patist A., Axelberd T., Shah DO., Effect of long chain alcohols on micellar relaxation time and foaming properties of sodium dodecyl sulfate solutions. J Coll Interf Sci. 1998;208:259–65. | pl |
dc.description.references | Carabias-Martínez R., Rodríguez-Gonzalo E., Domínguez-Álvarez J., García-Pinto C., Hernández-Méndez J. Prediction of the behavior of organic pollutants using cloud point extraction. J Chromatogr A. 2003;1005:23–4. | pl |
dc.description.references | Carabias-Martínez R., Rodríguez-Gonzalo E., Moreno-Cordero B., Pérez-Pavón JL, García-Pinto C, Fernández-Laespada E. Surfactant cloud point extraction and preconcentration of organic compounds prior to chromatography and capillary electrophoresis. J Chromatogr A. 2000; 902:251–65. | pl |
dc.description.references | Ashiru DAI., Patel R., Basit AW., Simple and universal HPLC-UV method to determine cimetidine, ranitidine, famotidine and nizatidine in urine: application to the analysis of ranitidine and its metabolites in human volunteers. J Chromatogr B. 2007;860:235–40. | pl |
dc.identifier.eissn | 1558-9293 | - |
dc.description.volume | 20 | pl |
dc.description.issue | 6 | pl |
dc.description.firstpage | 1401 | pl |
dc.description.lastpage | 1409 | pl |
dc.identifier.citation2 | Journal of Surfactants and Detergents | pl |
Występuje w kolekcji(ach): | Artykuły naukowe (WChem) |
Pliki w tej pozycji:
Plik | Opis | Rozmiar | Format | |
---|---|---|---|---|
I_Kiszkiel_Taudul_B_Starczewska_J_ Karpinska_M_Kasabula_Application_of_Micellar_Extraction_for_Isolation_of_Famotidine.pdf | 649,23 kB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL