REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/15866
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorCoghetto, Roland-
dc.contributor.authorGrabowski, Adam-
dc.date.accessioned2024-01-26T11:28:50Z-
dc.date.available2024-01-26T11:28:50Z-
dc.date.issued2023-
dc.identifier.citationFormalized Mathematics, Volume 31, Issue 1, Pages 325-339pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/15866-
dc.description.abstractIn the article, we continue the formalization of the work devoted to Tarski’s geometry – the book “Metamathematische Methoden in der Geometrie” by W. Schwabhäuser, W. Szmielew, and A. Tarski. We use the Mizar system to formalize Chapter 9 of this book. We deal with half-planes and planes proving their properties as well as the theory of intersecting lines.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectTarski geometrypl
dc.subjecthalf-planepl
dc.subjectplanepl
dc.titleTarski Geometry Axioms. Part V – Half-planes and Planespl
dc.typeArticlepl
dc.rights.holder© 2022 The Author(s)pl
dc.rights.holderCC BY-SA 3.0 licensepl
dc.identifier.doi10.2478/forma-2023-0026-
dc.description.AffiliationRoland Coghetto - cafr-MSA2P asbl, Rue de la Brasserie 5, 7100 La Louvi`ere, Belgiumpl
dc.description.AffiliationAdam Grabowski - Faculty of Computer Science, University of Białystok, Polandpl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesMichael Beeson and Larry Wos. OTTER proofs in Tarskian geometry. In International Joint Conference on Automated Reasoning, volume 8562 of Lecture Notes in Computer Science, pages 495–510. Springer, 2014. doi:10.1007/978-3-319-08587-6_38.pl
dc.description.referencesGabriel Braun and Julien Narboux. A synthetic proof of Pappus’ theorem in Tarski’s geometry. Journal of Automated Reasoning, 58(2):23, 2017. doi:10.1007/s10817-016-9374-4.pl
dc.description.referencesRoland Coghetto. Tarski’s parallel postulate implies the 5th Postulate of Euclid, the Postulate of Playfair and the original Parallel Postulate of Euclid. Archive of Formal Proofs, January 2021. https://isa-afp.org/entries/IsaGeoCoq.html, Formal proof development.pl
dc.description.referencesRoland Coghetto and Adam Grabowski. Tarski geometry axioms – Part II. Formalized Mathematics, 24(2):157–166, 2016. doi:10.1515/forma-2016-0012.pl
dc.description.referencesRoland Coghetto and Adam Grabowski. Tarski geometry axioms. Part III. Formalized Mathematics, 25(4):289–313, 2017. doi:10.1515/forma-2017-0028.pl
dc.description.referencesRoland Coghetto and Adam Grabowski. Tarski geometry axioms. Part III. Formalized Mathematics, 25(4):289–313, 2017. doi:10.1515/forma-2017-0028.pl
dc.description.referencesSana Stojanovic Durdevic, Julien Narboux, and Predrag Janiˇcić. Automated generation of machine verifiable and readable proofs: a case study of Tarski’s geometry. Annals of Mathematics and Artificial Intelligence, 74(3-4):249–269, 2015.pl
dc.description.referencesAdam Grabowski. Tarski’s geometry modelled in Mizar computerized proof assistant. In Maria Ganzha, Leszek Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), volume 8 of ACSIS – Annals of Computer Science and Information Systems, pages 373–381, 2016. doi:10.15439/2016F290.pl
dc.description.referencesAdam Grabowski and Roland Coghetto. Tarski’s geometry and the Euclidean plane in Mizar. In Joint Proceedings of the FM4M, MathUI, and ThEdu Workshops, Doctoral Program, and Work in Progress at the Conference on Intelligent Computer Mathematics 2016 co-located with the 9th Conference on Intelligent Computer Mathematics (CICM 2016), Białystok, Poland, July 25–29, 2016, volume 1785 of CEUR-WS, pages 4–9. CEUR-WS.org, 2016.pl
dc.description.referencesHaragauri Narayan Gupta. Contributions to the Axiomatic Foundations of Geometry. PhD thesis, University of California-Berkeley, 1965.pl
dc.description.referencesTimothy James McKenzie Makarios. A mechanical verification of the independence of Tarski’s Euclidean Axiom. Victoria University of Wellington, New Zealand, 2012. Master’s thesis.pl
dc.description.referencesTimothy James McKenzie Makarios. The independence of Tarski’s Euclidean Axiom. Archive of Formal Proofs, October 2012. Formal proof development.pl
dc.description.referencesTimothy James McKenzie Makarios. A further simplification of Tarski’s axioms of geometry. Note di Matematica, 33(2):123–132, 2014.pl
dc.description.referencesJulien Narboux. Mechanical theorem proving in Tarski’s geometry. In F. Botana and T. Recio, editors, Automated Deduction in Geometry, volume 4869 of Lecture Notes in Computer Science, pages 139–156. Springer, 2007.pl
dc.description.referencesWilliam Richter, Adam Grabowski, and Jesse Alama. Tarski geometry axioms. Formalized Mathematics, 22(2):167–176, 2014. doi:10.2478/forma-2014-0017.pl
dc.description.referencesWolfram Schwabhäuser, Wanda Szmielew, and Alfred Tarski. Metamathematische Methoden in der Geometrie. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.pl
dc.identifier.eissn1898-9934-
dc.description.volume31pl
dc.description.issue1pl
dc.description.firstpage325pl
dc.description.lastpage339pl
dc.identifier.citation2Formalized Mathematicspl
dc.identifier.orcid0000-0002-4901-0766-
dc.identifier.orcid0000-0001-5026-3990-
Występuje w kolekcji(ach):Artykuły naukowe (WInf)
Formalized Mathematics, 2023, Volume 31, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
Tarski-Geometry-Axioms-Part-V-Halfplanes-and-Planes.pdf291,52 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons