REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/15813
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorHeropolitańska-Pliszka, Edyta-
dc.contributor.authorBerk, Klaudia-
dc.contributor.authorMaciejczyk, Mateusz-
dc.contributor.authorSawicka-Powierza, Jolanta-
dc.contributor.authorBernatowska, Ewa-
dc.contributor.authorWolska-Kuśnierz, Beata-
dc.contributor.authorPac, Małgorzata-
dc.contributor.authorDąbrowska-Leonik, Nel-
dc.contributor.authorPiatosa, Barbara-
dc.contributor.authorLewandowicz-Uszyńska, Aleksandra-
dc.contributor.authorKarpińska, Joanna-
dc.contributor.authorZalewska, Anna-
dc.contributor.authorMikołuć, Bożena-
dc.date.accessioned2024-01-22T14:05:14Z-
dc.date.available2024-01-22T14:05:14Z-
dc.date.issued2020-
dc.identifier.citationJournal of Clinical Medicine, Volume 9, Issue 5, 2020, pp. 1-14pl
dc.identifier.issn2077-0383-
dc.identifier.urihttp://hdl.handle.net/11320/15813-
dc.description.abstractThe aim of our study was to evaluate redox status, enzymatic and non-enzymatic antioxidant barriers, oxidative damage of proteins, lipids and DNA, as well as concentration of coenzyme Q10 and vitamins A and E in patients with chronic granulomatous disease (CGD). The study was performed on fifteen Caucasian individuals (median age 24 years and seven months) diagnosed with CGD. The mutation in the NCF1 gene was confirmed in ten patients, and in the CYBB gene in five patients. We demonstrated high levels of total oxidant status (TOS) and oxidative stress index (OSI), lipids (↑8-isoprostanes (8-isoP), ↑4-hydroxynonenal (4-HNE)), proteins (↑advanced oxidation protein products (AOPP)) and DNA (↑8-hydroxy-2′-deoxyguanosine (8-OHdG)) oxidation products in CGD individuals as compared to sex- and age-matched healthy controls. We showed enhanced serum enzymatic activity of catalase (CAT) and superoxide dismutase-1 (SOD) and significantly decreased coenzyme Q10 concentration. Our study confirmed redox disturbances and increased oxidative damage in CGD patients, and indicated the need to compare redox imbalance depending on the type of mutation and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. The question regarding effectiveness of antioxidant therapy in patients with CGD is open, and the need to establish guidelines in this area remains to be addressed.pl
dc.description.sponsorshipThis work was supported by grants from the Medical University of Bialystok, Poland (grant number: SUB/1/DN/19/002/1126).pl
dc.language.isoenpl
dc.publisherMDPIpl
dc.rightsCreative Commons Attribution (CC BY) license*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectchronic granulomatous diseasepl
dc.subjectprimary immunodeficiencypl
dc.subjectoxidative stresspl
dc.subjectantioxidantspl
dc.subjectcoenzyme Q10pl
dc.titleSystemic Redox Imbalance in Patients with Chronic Granulomatous Diseasepl
dc.typeArticlepl
dc.rights.holder© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)pl
dc.identifier.doi10.3390/jcm9051397-
dc.description.EmailJoanna Karpińska: joasia@uwb.edu.plpl
dc.description.AffiliationEdyta Heropolitańska-Pliszka - Clinical Immunology the Children’s Memorial Health Institute, al. Dzieci Polskich 20, 04-730 Warsaw, Polandpl
dc.description.AffiliationKlaudia Berk - Department of Physiology, Medical University of Bialystok, ul. Mickiewicza 2c, 15-233 Bialystok, Polandpl
dc.description.AffiliationMateusz Maciejczyk - Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, ul. Mickiewicza 2c, 15-233 Bialystok, Polandpl
dc.description.AffiliationJolanta Sawicka-Powierza - Department of Family Medicine, Medical University of Bialystok, 15-054 Bialystok, Polandpl
dc.description.AffiliationEwa Bernatowska - Clinical Immunology the Children’s Memorial Health Institute, al. Dzieci Polskich 20, 04-730 Warsaw, Polandpl
dc.description.AffiliationBeata Wolska-Kuśnierz - Clinical Immunology the Children’s Memorial Health Institute, al. Dzieci Polskich 20, 04-730 Warsaw, Polandpl
dc.description.AffiliationMałgorzata Pac - Clinical Immunology the Children’s Memorial Health Institute, al. Dzieci Polskich 20, 04-730 Warsaw, Polandpl
dc.description.AffiliationNel Dąbrowska-Leonik - Clinical Immunology the Children’s Memorial Health Institute, al. Dzieci Polskich 20, 04-730 Warsaw, Polandpl
dc.description.AffiliationBarbara Piatosa - Histocompatibility Laboratory, Children’s Memorial Health Institute, al. Dzieci Polskich 20, 04-730 Warsaw, Polandpl
dc.description.AffiliationAleksandra Lewandowicz-Uszyńska - 3rd Department and Clinic of Pediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, ul. Koszarowa 5, 50-367 Wrocław, Polandpl
dc.description.AffiliationJoanna Karpińska - Institute of Chemistry, University of Bialystok, ul. Ciołkowskiego. 1K, 15-245 Białystok, Polandpl
dc.description.AffiliationAnna Zalewska - Experimental Dentistry Laboratory, Medical University of Bialystok, ul. Szpitalna 37, 15-295 Bialystok, Polandpl
dc.description.AffiliationBożena Mikołuć - Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Waszyngtona 17, 15-274 Bialystok, Polandpl
dc.description.referencesWinkelstein, J.A.; Marino, M.C.; Johnston, R.B.; Boyle, J.; Curnutte, J.; Gallin, J.I.; Malech, H.L.; Holland, S.M.; Ochs, H.; Quie, P.; et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltim.) 2000, 79, 155–169.pl
dc.description.referencesArnold, D.E.; Heimall, J.R. A Review of Chronic Granulomatous Disease. Adv. Ther. 2017, 34, 2543–2557.pl
dc.description.referencesBabior, B.M. NADPH oxidase. Curr. Opin. Immunol. 2004, 16, 42–47.pl
dc.description.referencesMarciano, B.E.; Spalding, C.; Fitzgerald, A.; Mann, D.; Brown, T.; Osgood, S.; Yockey, L.; Darnell, D.N.; Barnhart, L.; Daub, J.; et al. Common severe infections in chronic granulomatous disease. Clin. Infect. Dis. 2015, 60, 1176–1183.pl
dc.description.referencesHenrickson, S.E.; Jongco, A.M.; Thomsen, K.F.; Garabedian, E.K.; Thomsen, I.P. Noninfectious manifestations and complications of chronic granulomatous disease. J. Pediatric Infect. Dis. Soc. 2018, 7, S18–S24.pl
dc.description.referencesRenzi, S.; Langenberg-Ververgaert, K.P.S.; Waespe, N.; Ali, S.; Bartram, J.; Michaeli, O.; Upton, J.; Cada, M. Primary immunodeficiencies and their associated risk of malignancies in children: An overview. Eur. J. Pediatr. 2020, 179, 689–697.pl
dc.description.referencesvan der Weyden, L.; Speak, A.O.; Swiatkowska, A.; Clare, S.; Schejtman, A.; Santilli, G.; Arends, M.J.; Adams, D.J. Pulmonary metastatic colonisation and granulomas in NOX2-deficient mice. J. Pathol. 2018, 246, 300–310.pl
dc.description.referencesThomas, D.C. How the phagocyte NADPH oxidase regulates innate immunity. Free Radic. Biol. Med. 2018, 125, 44–52.pl
dc.description.referencesMeissner, F.; Seger, R.A.; Moshous, D.; Fischer, A.; Reichenbach, J.; Zychlinsky, A. Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 2010, 116, 1570–1573.pl
dc.description.referencesSundqvist, M.; Christenson, K.; Björnsdottir, H.; Osla, V.; Karlsson, A.; Dahlgren, C.; Speert, D.P.; Fasth, A.; Brown, K.L.; Bylund, J. Elevated mitochondrial reactive oxygen species and cellular redox imbalance in human NADPH-oxidase-deficient phagocytes. Front. Immunol. 2017, 8, 1828.pl
dc.description.referencesGriffith, L.M.; Cowan, M.J.; Notarangelo, L.D.; Kohn, D.B.; Puck, J.M.; Shearer, W.T.; Burroughs, L.M.; Torgerson, T.R.; Decaluwe, H.; Haddad, E. Primary Immune Deficiency Treatment Consortium (PIDTC) update. J. Allergy Clin. Immunol. 2016, 138, 375–385.pl
dc.description.referencesMaciejczyk, M.; Zalewska, A.; Ładny, J.R. Salivary Antioxidant Barrier, Redox Status, and Oxidative Damage to Proteins and Lipids in Healthy Children, Adults, and the Elderly. Oxid. Med. Cell. Longev. 2019, 2019, 4393460.pl
dc.description.referencesPaglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169.pl
dc.description.referencesAebi, H. [13] Catalase in Vitro. Methods Enzymol. 1984, 105, 121–126.pl
dc.description.referencesMisra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175.pl
dc.description.referencesKarpińska, J.; Mikołuć, B.; Motkowski, R.; Piotrowska-Jastrzębska, J. HPLC method for simultaneous determination of retinol, α-tocopherol and coenzyme Q10 in human plasma. J. Pharm. Biomed. Anal. 2006, 42, 232–236.pl
dc.description.referencesKalousová, M.; Škrha, J.; Zima, T. Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiol. Res. 2002, 51, 597–604pl
dc.description.referencesZińczuk, J.; Maciejczyk, M.; Zaręba, K.; Romaniuk, W.; Markowski, A.; Kędra, B.; Zalewska, A.; Pryczynicz, A.; Matowicka-Karna, J.; Guzińska-Ustymowicz, K. Antioxidant Barrier, Redox Status, and Oxidative Damage to Biomolecules in Patients with Colorectal Cancer. Can Malondialdehyde and Catalase Be Markers of Colorectal Cancer Advancement? Biomolecules 2019, 9, 637.pl
dc.description.referencesMiller, E.; Morel, A.; Saso, L.; Saluk, J. Isoprostanes and neuroprostanes as biomarkers of oxidative stress in neurodegenerative diseases. Oxid. Med. Cell. Longev. 2014, 2014, 572491.pl
dc.description.referencesJanicka, M.; Kot-Wasik, A.; Kot, J.; Namieśnik, J. Isoprostanes-biomarkers of lipid peroxidation: Their utility in evaluating oxidative stress and analysis. Int. J. Mol. Sci. 2010, 11, 4631–4659.pl
dc.description.referencesBasu, S. Bioactive eicosanoids: Role of prostaglandin F2α and F2-isoprostanes in inflammation and oxidative stress related pathology. Mol. Cells 2010, 30, 383–391.pl
dc.description.referencesMaciejczyk, M.; Zebrowska, E.; Zalewska, A.; Chabowski, A. Redox balance, antioxidant defense, and oxidative damage in the hypothalamus and cerebral cortex of rats with high fat diet-induced insulin resistance. Oxid. Med. Cell. Longev. 2018, 2018, 6940515.pl
dc.description.referencesXiao, M.; Zhong, H.; Xia, L.; Tao, Y.; Yin, H. Pathophysiology of mitochondrial lipid oxidation: Role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Free Radic. Biol. Med. 2017, 111, 316–327.pl
dc.description.referencesMcConnell, E.J.; Bittelmeyer, A.M.; Raess, B.U. Irreversible inhibition of plasma membrane (Ca2+ +Mg2+)-ATPase and Ca2+ transport by 4-OH-2,3-trans-nonenal. Arch. Biochem. Biophys. 1999, 361, 252–256.pl
dc.description.referencesVioli, F.; Sanguigni, V.; Carnevale, R.; Plebani, A.; Rossi, P.; Finocchi, A.; Pignata, C.; De Mattia, D.; Martire, B.; Pietrogrande, M.C.; et al. Hereditary deficiency of gp91phox is associated with enhanced arterial dilatation: Results of a multicenter study. Circulation 2009, 120, 1616–1622.pl
dc.description.referencesCarnevale, R.; Loffredo, L.; Sanguigni, V.; Plebani, A.; Rossi, P.; Pignata, C.; Martire, B.; Finocchi, A.; Pietrogrande, M.C.; Azzari, C.; et al. Different degrees of NADPH oxidase 2 regulation and in vivo platelet Activation: Lesson from chronic granulomatous disease. J. Am. Heart Assoc. 2014, 3, 3.pl
dc.description.referencesMartindale, J.L.; Holbrook, N.J. Cellular response to oxidative stress: Signaling for suicide and survival. J. Cell. Physiol. 2002, 192, 1–15.pl
dc.description.referencesMaciejczyk, M.; Zebrowska, E.; Chabowski, A. Insulin resistance and oxidative stress in the brain: What’s new? Int. J. Mol. Sci. 2019, 20, 874.pl
dc.description.referencesGuo, Z.J.; Niu, H.X.; Hou, F.F.; Zhang, L.; Fu, N.; Nagai, R.; Lu, X.; Chen, B.H.; Shan, Y.X.; Tian, J.W.; et al. Advanced oxidation protein products activate vascular endothelial cells via a RAGE-mediated signaling pathway. Antioxid. Redox Signal. 2008, 10, 1699–1712.pl
dc.description.referencesZalewska, A.; Maciejczyk, M.; Szulimowska, J.; Imierska, M.; Błachnio-Zabielska, A. High-fat diet affects ceramide content, disturbs mitochondrial redox balance, and induces apoptosis in the submandibular glands of mice. Biomolecules 2019, 9, 877.pl
dc.description.referencesScavuzzi, B.M.; Simão, A.N.C.; Iriyoda, T.M.V.; Lozovoy, M.A.B.; Stadtlober, N.P.; Franchi Santos, L.F.D.R.; Flauzino, T.; de Medeiros, F.A.; de Sá, M.C.; Consentin, L.; et al. Increased lipid and protein oxidation and lowered anti-oxidant defenses in systemic lupus erythematosus are associated with severity of illness, autoimmunity, increased adhesion molecules, and Th1 and Th17 immune shift. Immunol. Res. 2018, 66, 158–171.pl
dc.description.referencesLood, C.; Blanco, L.P.; Purmalek, M.M.; Carmona-Rivera, C.; De Ravin, S.S.; Smith, C.K.; Malech, H.L.; Ledbetter, J.A.; Elkon, K.B.; Kaplan, M.J. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 2016, 22, 146–153.pl
dc.description.referencesGiardino, G.; Cicalese, M.P.; Delmonte, O.; Migliavacca, M.; Palterer, B.; Loffredo, L.; Cirillo, E.; Gallo, V.; Violi, F.; Pignata, C. NADPH oxidase deficiency: A multisystem approach. Oxid. Med. Cell. Longev. 2017, 2017, 4590127.pl
dc.description.referencesGabrion, A.; Hmitou, I.; Moshous, D.; Neven, B.; Lefèvre-Utile, A.; Diana, J.S.; Suarez, F.; Picard, C.; Blanche, S.; Fischer, A.; et al. Mammalian target of rapamycin inhibition counterbalances the inflammatory status of immune cells in patients with chronic granulomatous disease. J. Allergy Clin. Immunol. 2017, 139, 1641–1649.pl
dc.description.referencesMaciejczyk, M.; Heropolitańska-Pliszka, E.; Pietrucha, B.; Sawicka-Powierza, J.; Bernatowska, E.; Wolska-Kuśnierz, B.; Pac, M.; Car, H.; Zalewska, A.; Mikołuć, B. Antioxidant defense, redox homeostasis, and oxidative damage in children with ataxia telangiectasia and nijmegen breakage syndrome. Front. Immunol. 2019, 10, 2322.pl
dc.description.referencesChatterjee, N.; Walker, G.C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 2017, 58, 235–263.pl
dc.description.referencesZalewska, A.; Ziembicka, D.; Zendzian-Piotrowska, M.; MacIejczyk, M. The impact of high-fat diet on mitochondrial function, free radical production, and nitrosative stress in the salivary glands of wistar rats. Oxid. Med. Cell. Longev. 2019, 2019, 2606120.pl
dc.description.referencesMarrocco, I.; Altieri, F.; Peluso, I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxid. Med. Cell. Longev. 2017, 2017, 6501046.pl
dc.description.referencesValko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84.pl
dc.description.referencesWeydert, C.J.; Cullen, J.J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc. 2010, 5, 51.pl
dc.description.referencesŚwiderska, M.; Maciejczyk, M.; Zalewska, A.; Pogorzelska, J.; Flisiak, R.; Chabowski, A. Oxidative stress biomarkers in the serum and plasma of patients with non-alcoholic fatty liver disease (NAFLD). Can plasma AGE be a marker of NAFLD? Oxidative stress biomarkers in NAFLD patients. Free Radic. Res. 2019, 53, 841–850.pl
dc.description.referencesSchlotte, V.; Sevanian, A.; Hochstein, P.; Weithmann, K.U. Effect of uric acid and chemical analogues on oxidation of human low density lipoprotein in vitro. Free Radic. Biol. Med. 1998, 25, 839–847.pl
dc.description.referencesPasalic, D.; Marinkovic, N.; Feher-turkovic, L. Uric acid as one of the important factors in multifactorial disorders—Facts and controversies. Biochem. Med. 2012, 22, 63–75.pl
dc.description.referencesLü, J.M.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010, 14, 840–860.pl
dc.description.referencesRaizner, A.E. Coenzyme Q10. Methodist Debakey Cardiovasc. J. 2019, 15, 185.pl
dc.description.referencesLópez, L.C.; Luna-Sánchez, M.; García-Corzo, L.; Quinzii, C.M.; Hirano, M. Pathomechanisms in coenzyme Q10-deficient human fibroblasts. Mol. Syndromol. 2014, 5, 163–169.pl
dc.description.referencesRodick, T.C.; Seibels, D.R.; Babu, J.R.; Huggins, K.W.; Ren, G.; Mathews, S.T. Potential role of coenzyme Q10 in health and disease conditions. Nutr. Diet. Suppl. 2018, 10, 1–11.pl
dc.description.referencesMontero, R.; Yubero, D.; Salgado, M.C.; González, M.J.; Campistol, J.; O’Callaghan, M.D.M.; Pineda, M.; Delgadillo, V.; Maynou, J.; Fernandez, G.; et al. Plasma coenzyme Q10 status is impaired in selected genetic conditions. Sci. Rep. 2019, 9, 793.pl
dc.description.referencesLee, S.H.; Park, M.-J.; Lee, S.; Cho, M.-L. Coenzyme Q10 Exerts Anti-Inflammatory Activity and Induces Treg in Graft versus Host Disease. J. Med. Food 2016, 19, 238–244.pl
dc.description.referencesLee, S.-Y.; Lee, S.H.; Yang, E.-J.; Kim, J.-K.; Kim, E.-K.; Jung, K.; Jung, H.; Lee, K.; Lee, H.H.; Lee, B.-I.; et al. Coenzyme Q10 Inhibits Th17 and STAT3 Signaling Pathways to Ameliorate Colitis in Mice. J. Med. Food 2017, 20, 821–829.pl
dc.description.referencesAlcocer-Gómez, E.; Culic, O.; Navarro-Pando, J.M.; Sánchez-Alcázar, J.A.; Bullón, P. Effect of Coenzyme Q10 on Psychopathological Symptoms in Fibromyalgia Patients. CNS Neurosci. Ther. 2017, 23, 188–189.pl
dc.description.volume9pl
dc.description.issue5pl
dc.description.firstpage1pl
dc.description.lastpage14pl
dc.identifier.citation2Journal of Clinical Medicinepl
dc.identifier.orcidbrakORCID-
dc.identifier.orcidbrakORCID-
dc.identifier.orcid0000-0001-5609-3187-
dc.identifier.orcid0000-0002-0860-2554-
dc.identifier.orcidbrakORCID-
dc.identifier.orcidbrakORCID-
dc.identifier.orcidbrakORCID-
dc.identifier.orcidbrakORCID-
dc.identifier.orcidbrakORCID-
dc.identifier.orcidbrakORCID-
dc.identifier.orcid0000-0002-6100-0691-
dc.identifier.orcid0000-0003-4562-0951-
dc.identifier.orcid0000-0002-8284-6426-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons