REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/15807
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorKiejza, Dariusz-
dc.contributor.authorKotowska, Urszula-
dc.contributor.authorPolińska, Weronika-
dc.contributor.authorKarpińska, Joanna-
dc.date.accessioned2024-01-22T11:24:27Z-
dc.date.available2024-01-22T11:24:27Z-
dc.date.issued2022-
dc.identifier.citationMolecules, Volume 27, Issue 15 (2022) pp. 1-17pl
dc.identifier.issn1420-3049-
dc.identifier.urihttp://hdl.handle.net/11320/15807-
dc.description.abstractA new, simple and sensitive method for isolating nine compounds from the bisphenol group (analogues: A, B, C, E, F, G, Cl2, Z, AP) based on one-step liquid–liquid microextraction with in situ acylation followed by gas chromatography-mass spectrometry was developed and validated using influent and effluent wastewaters. The chemometric approach based on the Taguchi method was used to optimize the main conditions of simultaneous extraction and derivatization. The recoveries of the proposed procedure ranged from 85 to 122%, and the repeatability expressed by the coefficient of variation did not exceed 8%. The method’s limits of detection were in the range of 0.4–64 ng/L, and the method’s limits of quantification ranged from 1.3 to 194 ng/L. The developed method was used to determine the presence of the tested compounds in wastewater from a municipal wastewater treatment plant located in northeastern Poland. From this sample, eight analytes were detected. Concentrations of bisphenol A of 400 ng/L in influent and 100 ng/L in effluent were recorded, whereas other bisphenols reached 67 and 50 ng/L for influent and effluent, respectively. The removal efficiency of bisphenol analogues in the tested wastewater treatment plant ranged from 7 to approximately 88%.pl
dc.description.sponsorshipNational Science Centre Poland (grant nos. 2019/33/B/NZ8/00012 and 2019/03/X/ST10/01959)pl
dc.description.sponsorship“Innovation Incubator 4.0” program of the Polish Ministry of Science and Higher Education, co-financed by the European Union under the European Regional Development Fund.pl
dc.language.isoenpl
dc.publisherMDPIpl
dc.rightsCreative Commons Attribution (CC BY) license*
dc.rights.urihttps:// creativecommons.org/licenses/by/ 4.0/*
dc.subjectbisphenol analoguepl
dc.subjectmunicipal wastewaterpl
dc.subjectliquid–liquid microextractionpl
dc.subjectacylationpl
dc.subjectgas chromatography-mass spectrometrypl
dc.titleUSAEME-GC/MS Method for Easy and Sensitive Determination of Nine Bisphenol Analogues in Water and Wastewaterpl
dc.typeArticlepl
dc.rights.holder© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).pl
dc.identifier.doi10.3390/molecules27154977-
dc.description.EmailJoanna Karpińska: joasia@uwb.edu.plpl
dc.description.AffiliationDariusz Kiejza - Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciołkowskiego 1K St., 15-245 Białystok, Polandpl
dc.description.AffiliationUrszula Kotowska - Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K St., 15-245 Białystok, Polandpl
dc.description.AffiliationWeronika Polińska - Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciołkowskiego 1K St., 15-245 Białystok, Polandpl
dc.description.AffiliationJoanna Karpińska - Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K St., 15-245 Białystok, Polandpl
dc.description.referencesKhan, N.G.; Correia, J.; Adiga, D.; Rai, P.S.; Dsouza, H.S.; Chakrabarty, S.; Kabekkodu, S.P. A comprehensive review on the carcinogenic potential of bisphenol A: Clues and evidence. Environ. Sci. Pollut. Res. 2021, 28, 19643–19663.pl
dc.description.referencesNelson, A.M.; Long, T.E. A perspective on emerging polymer technologies for bisphenol—A replacement. Polym. Int. 2012, 61, 1485–1491.pl
dc.description.referencesVilarinho, F.; Sendón, R.; van der Kellen, A.; Vaz, M.; Silva, A.S. Bisphenol A in food as a result of its migration from food packaging. Trends Food Sci. Technol. 2019, 91, 33–65.pl
dc.description.referencesChen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.-L.; Wu, Y.; Widelka, M. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity—A review. Environ. Sci. Technol. 2016, 50, 5438–5453.pl
dc.description.referencesYamazaki, E.; Yamashita, N.; Taniyasu, S.; Lam, J.; Lam, P.K.; Moon, H.-B.; Jeong, Y.; Kannan, P.; Achyuthan, H.; Munuswamy, N.; et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. Ecotoxicol. Environ. Saf. 2015, 122, 565–572.pl
dc.description.referencesDodds, E.C.; Lawson, W. Synthetic strogenic agents without the phenanthrene nucleus. Nature 1936, 137, 996.pl
dc.description.referencesĎurovcová, I.; Kyzek, S.; Fabová, J.; Makuková, J.; Gálová, E.; Ševˇcoviˇcová, A. Genotoxic potential of bisphenol A: A review. Environ. Pollut. 2022, 306, 119346.pl
dc.description.referencesYamamoto, T.; Yasuhara, A.; Shiraishi, H.; Nakasugi, O. Bisphenol A in hazardous waste landfill leachates. Chemosphere 2001, 42, 415–418.pl
dc.description.referencesLee, S.; Liao, C.; Song, G.-J.; Ra, K.; Kannan, K.; Moon, H.-B. Emission of bisphenol analogues including bisphenol A and bisphenol F from wastewater treatment plants in Korea. Chemosphere 2015, 119, 1000–1006.pl
dc.description.referencesCrain, D.A.; Eriksen, M.; Iguchi, T.; Jobling, S.; Laufer, H.; LeBlanc, G.A.; Guillette, L.J. An ecological assessment of bisphenol-A: Evidence from comparative biology. Reprod. Toxicol. 2007, 24, 225–239.pl
dc.description.referencesKapelewska, J.; Kotowska, U.; Karpińska, J.; Kowalczuk, D.; Arciszewska, A.; Swirydo, A. Occurrence, removal, mass loading and environmental risk assessment of emerging organic contaminants in leachates, groundwaters and wastewaters. Microchem. J. 2018, 137, 292–301.pl
dc.description.referencesKotowska, U.; Kapelewska, J.; Kotowski, A.; Pietuszewska, E. Rapid and sensitive analysis of hormones and other emerging contaminants in groundwater using ultrasound-assisted emulsification microextraction with solidification of floating organic droplet followed by GC-MS detection. Water 2019, 11, 1638.pl
dc.description.referencesWu, N.C.; Seebacher, F. Effect of the plastic pollutant bisphenol A on the biology of aquatic organisms: A meta-analysis. Glob. Chang. Biol. 2020, 26, 3821–3833.pl
dc.description.referencesFu, P.; Kawamura, K. Ubiquity of bisphenol A in the atmosphere. Environ. Pollut. 2010, 158, 3138–3143.pl
dc.description.referencesAbraham, A.; Chakraborty, P. A review on sources and health impacts of bisphenol A. Rev. Environ. Health 2019, 35, 201.pl
dc.description.referencesLu, L.; Yang, Y.; Zhang, J.; Shao, B. Determination of seven bisphenol analogues in reed and Callitrichaceae by ultra performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2014, 953–954, 80–85.pl
dc.description.referencesEFSA. Bisphenol A: EFSA Draft Opinion Proposes Lowering the Tolerable Daily Intake. Available online: https://www.efsa.europa.eu/en/news/bisphenol-efsa-draft-opinion-proposes-lowering-tolerable-daily-intake (accessed on 28 May 2022).pl
dc.description.referencesWang, H.; Liu, Z.-H.; Tang, Z.; Zhang, J.; Yin, H.; Dang, Z.; Wu, P.-X.; Liu, Y. Bisphenol analogues in Chinese bottled water: Quantification and potential risk analysis. Sci. Total Environ. 2020, 713, 136583.pl
dc.description.referencesGarcia-Corcoles, M.T.; Cipa, M.; Rodríguez-Gómez, R.R.; Rivas, A.; Olea-Serrano, F.; Vílchez, J.L.; Zafra-Gómez, A. Determination of bisphenols with estrogenic activity in plastic packaged baby food samples using solid-liquid extraction and clean-up with dispersive sorbents followed by gas chromatography tandem mass spectrometry analysis. Talanta 2018, 178, 441–448.pl
dc.description.referencesMatsushima, A.; Liu, X.; Okada, H.; Shimohigashi, M.; Shimohigashi, Y. Bisphenol AF is a full agonist for the estrogen receptor ERα but a highly specific antagonist for ERβ. Environ. Health Perspect. 2010, 118, 1267–1272.pl
dc.description.referencesSun, X.; Peng, J.; Wang, M.; Wang, J.; Tang, C.; Yang, L.; Lei, H.; Li, F.; Wang, X.; Chen, J. Determination of nine bisphenols in sewage and sludge using dummy molecularly imprinted solid-phase extraction coupled with liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2018, 1552, 10–16.pl
dc.description.referencesSun, Q.; Wang, Y.; Li, Y.; Ashfaq, M.; Dai, L.; Xie, X.; Yu, C.-P. Fate and mass balance of bisphenol analogues in wastewater treatment plants in Xiamen City, China. Environ. Pollut. 2017, 225, 542–549.pl
dc.description.referencesWang, Q.; Feng, Q.; Hu, G.; Gao, Z.; Zhu, X.; Epri, J.E. Simultaneous determination of seven bisphenol analogues in surface water by solid-phase extraction and ultra-performance liquid chromatography-tandem mass spectrometry. Microchem. J. 2021, 175, 107098.pl
dc.description.referencesWang, Q.; Zhu, L.; Chen, M.; Ma, X.; Wang, X.; Xia, J. Simultaneously determination of bisphenol A and its alternatives in sediment by ultrasound-assisted and solid phase extractions followed by derivatization using GC-MS. Chemosphere 2017, 169, 709–715.pl
dc.description.referencesZhang, H.; Zhang, Y.; Li, J.; Yang, M. Occurrence and exposure assessment of bisphenol analogues in source water and drinking water in China. Sci. Total Environ. 2018, 655, 607–613.pl
dc.description.referencesWang, R.; Dong, S.; Wang, P.; Li, T.; Huang, Y.; Zhao, L.; Su, X. Development and validation of an ultra performance liquid chromatography-tandem mass spectrometry method for twelve bisphenol compounds in animal feed. J. Chromatogr. B 2021, 1178, 122613.pl
dc.description.referencesMoscoso-Ruiz, I.; Gálvez-Ontiveros, Y.; Cantarero-Malagón, S.; Rivas, A.; Zafra-Gómez, A. Optimization of an ultrasound-assisted extraction method for the determination of parabens and bisphenol homologues in human saliva by liquid chromatographytandem mass spectrometry. Microchem. J. 2022, 175, 107122.pl
dc.description.referencesWang, H.; Liu, Z.-H.; Tang, Z.; Zhang, J.; Dang, Z.; Liu, Y. Possible overestimation of bisphenol analogues in municipal wastewater analyzed with GC-MS. Environ. Pollut. 2021, 273, 116505.pl
dc.description.referencesViñas, P.; López-García, I.; Campillo, N.; Rivas, R.E.; Hernández-Córdoba, M. Ultrasound-assisted emulsification microextraction coupled with gas chromatography–mass spectrometry using the Taguchi design method for bisphenol migration studies from thermal printer paper, toys and baby utensils. Anal. Bioanal. Chem. 2012, 404, 671–678.pl
dc.description.referencesFontana, A.R.; de Toro, M.M.; Altamirano, J.C. One-step derivatization and preconcentration microextraction technique for determination of bisphenol A in beverage samples by gas chromatography-mass spectrometry. J. Agric. Food Chem. 2011, 59, 3559–3565.pl
dc.description.referencesRice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. Standard Methods for the Examination of Water and Wastewater; American Public Health Association, American Water Works, Water Environment Federation: Washington, DC, USA, 2017.pl
dc.description.referencesWang, X.; Diao, C.-P.; Zhao, R.-S. Rapid determination of bisphenol A in drinking water using dispersive liquid-phase microextraction with in situ derivatization prior to GC-MS. J. Sep. Sci. 2008, 32, 154–159.pl
dc.description.referencesLiu, J.; Lu, W.; Liu, H.; Wu, X.; Li, J.; Chen, L. Dispersive liquid-liquid microextraction for four phenolic environmental estrogens in water samples followed by determination using capillary electrophoresis. Electrophoresis 2016, 37, 2502–2508.pl
dc.description.referencesZhou, Q.; Wang, G.; Xie, G. Preconcentration and determination of bisphenol A, naphthol and dinitrophenol from environmental water samples by dispersive liquid-phase microextraction and HPLC. Anal. Methods 2014, 6, 187–193.pl
dc.description.referencesKotowska, U.; Struk-Sokołowska, J.; Piekutin, J. Simultaneous determination of low molecule benzotriazoles and benzotriazole UV stabilizers in wastewater by ultrasound-assisted emulsification microextraction followed by GC–MS detection. Sci. Rep. 2021, 11, 10098.pl
dc.description.referencesKiejza, D.; Karpińska, J.; Kotowska, U. Degradation of benzotriazole UV stabilizers in PAA/d-electron metal ions systems—Removal kinetics, products and mechanism evaluation. Molecules 2022, 27, 3349.pl
dc.description.referencesKalhor, M.; Hamzehpour, N.; Ghashghaei, E.; Faridi, M.; Kalhor, H. Ultrasound-assisted emulsification-microextraction coupled to ion mobility spectrometry for monitoring of atrazine and simazine in environmental water. Int. J. Ion Mobil. Spectrom. 2016, 19, 139–144.pl
dc.description.referencesCacho, J.I.; Campillo, N.; Viñas, P.; Hernández-Córdoba, M. Stir bar sorptive extraction with EG-Silicone coating for bisphenols determination in personal care products by GC–MS. J. Pharm. Biomed. Anal. 2013, 78–79, 255–260.pl
dc.description.referencesRao, R.S.; Kumar, C.G.; Prakasham, R.S.; Hobbs, P.J. The Taguchi methodology as a statistical tool for biotechnological applications: A critical appraisal. Biotechnol. J. 2008, 3, 510–523.pl
dc.description.referencesShi, S.; Lv, J.; Liu, Q.; Nan, F.; Liu, X.; Xie, S.; Feng, J. Robust Taguchi optimization of activated carbon preparation from Phragmites australis for bisphenol A adsorption. Environ. Eng. Sci. 2020, 37, 337–345.pl
dc.description.referencesGenç, N.; Kılıçoğlu, Ö.; Narci, A.O. Removal of bisphenol A aqueous solution using surfactant-modified natural zeolite: Taguchi’s experimental design, adsorption kinetic, equilibrium and thermodynamic study. Environ. Technol. 2017, 38, 424–432.pl
dc.description.referencesChlorobenzene. CASRN 108-90-7|IRIS|US EPA, ORD. Available online: https://iris.epa.gov/ChemicalLanding/&substance_nmbr=399 (accessed on 14 July 2022).pl
dc.description.referencesViñas, P.; Campillo, N.; Martínez-Castillo, N.; Hernández-Córdoba, M. Comparison of two derivatization-based methods for solid-phase microextraction-gas chromatography-mass spectrometric determination of bisphenol A, bisphenol S and biphenol migrated from food cans. Anal. Bioanal. Chem. 2010, 397, 115–125.pl
dc.description.referencesJurek, A.; Leitner, E. Analytical determination of bisphenol A (BPA) and bisphenol analogues in paper products by GC-MS/MS. Food Addit. Contam. Part A 2017, 34, 1225–1238.pl
dc.description.referencesDel Olmo, M.; Zafra, A.; Suarez, B.; Gonzalez-Casado, A.; Taoufiki, J.; Vilchez, J. Use of solid-phase microextraction followed by on-column silylation for determining chlorinated bisphenol A in human plasma by gas chromatography-mass spectrometry. J. Chromatogr. B 2005, 817, 167–172.pl
dc.description.referencesMandrah, K.; Satyanarayana, G.; Roy, S.K. A dispersive liquid-liquid microextraction based on solidification of floating organic droplet followed by injector port silylation coupled with gas chromatography-tandem mass spectrometry for the determination of nine bisphenols in bottled carbonated beverages. J. Chromatogr. A 2017, 1528, 10–17.pl
dc.description.referencesKotowska, U.; Kapelewska, J.; Sturgulewska, J. Determination of phenols and pharmaceuticals in municipal wastewaters from Polish treatment plants by ultrasound-assisted emulsification-microextraction followed by GC-MS. Environ. Sci. Pollut. Res. 2014, 21, 660–673.pl
dc.description.referencesČesen, M.; Lenarčič, K.; Mislej, V.; Levstek, M.; Kovačič, A.; Cimrmančič, B.; Uranjek, N.; Kosjek, T.; Heath, D.; Dolenc, M.S.; et al. The occurrence and source identification of bisphenol compounds in wastewaters. Sci. Total Environ. 2018, 616–617, 744–752.pl
dc.description.referencesCaban, M.; Stepnowski, P. The quantification of bisphenols and their analogues in wastewaters and surface water by an improved solid-phase extraction gas chromatography/mass spectrometry method. Environ. Sci. Pollut. Res. 2020, 27, 28829–28839.pl
dc.description.referencesFan, X.; Katuri, G.P.; Caza, A.A.; Rasmussen, P.E.; Kubwabo, C. Simultaneous measurement of 16 bisphenol A analogues in house dust and evaluation of two sampling techniques. Emerg. Contam. 2021, 7, 1–9.pl
dc.description.referencesRuiz, F.-J.; Rubio, S.; Pérez-Bendito, D. Vesicular coacervative extraction of bisphenols and their diglycidyl ethers from sewage and river water. J. Chromatogr. A 2007, 1163, 269–276.pl
dc.description.referencesGou, X.; Gao, X.; Hu, G.; Chi, H.; Le, S.; Wang, W.; Liu, W. Simultaneous determination of 11 bisphenols in plastic bottled drinking water by ultra performance liquid chromatography-tandem mass spectrometry. Chin. J. Chromatogr. 2014, 32, 988–991.pl
dc.description.referencesCoutinho, R.; Vianna, M.T.G.; Marques, M. Optimisation of the conditions of dispersive liquid-liquid microextraction for environmentally friendly determination of bisphenols and benzophenone in complex water matrices by LC-MS/MS. Microchem. J. 2022, 180, 107636.pl
dc.description.referencesCzarczyńska-Goślińska, B.; Grześkowiak, T.; Frankowski, R.; Lulek, J.; Pieczak, J.; Zgoła-Grześkowiak, A. Determination of bisphenols and parabens in breast milk and dietary risk assessment for Polish breastfed infants. J. Food Compos. Anal. 2021, 98, 103839.pl
dc.description.referencesHan, S.; Song, Y.; Kang, A.; Deng, H.; Zhu, D.; Chi, Y. Determination of nine bisphenols in children’s water bottle by online enrichment coupled with high performance liquid chromatography-fluorescence detection. Chin. J. Chromatogr. 2019, 37, 1185–1192.pl
dc.description.volume27pl
dc.description.issue15pl
dc.description.firstpage1pl
dc.description.lastpage17pl
dc.identifier.citation2Moleculespl
dc.identifier.orcid0000-0003-3451-511X-
dc.identifier.orcid0000-0002-0595-0502-
dc.identifier.orcid0000-0001-5888-8442-
dc.identifier.orcid0000-0002-6100-0691-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons