REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/15747
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorKiejza, Dariusz-
dc.contributor.authorKarpińska, Joanna-
dc.contributor.authorKotowska, Urszula-
dc.date.accessioned2024-01-17T08:06:44Z-
dc.date.available2024-01-17T08:06:44Z-
dc.date.issued2022-
dc.identifier.citationMolecules, Volume 27, Issue 10 (2022), pp. 1-16pl
dc.identifier.issn1420-3049-
dc.identifier.urihttp://hdl.handle.net/11320/15747-
dc.description.abstractBenzotriazole UV stabilizers (BUVs) have gained popularity, due to their absorption properties in the near UV range (200–400 nm). They are used in the technology for manufacturing plastics, protective coatings, and cosmetics, to protect against the destructive influence of UV radiation. These compounds are highly resistant to biological and chemical degradation. As a result of insufficient treatment by sewage treatment plants, they accumulate in the environment and in the tissues of living organisms. BUVs have adverse effects on living organisms. This work presents the use of peracetic acid in combination with d-electron metal ions (Fe2+, Co2+), for the chemical oxidation of five UV filters from the benzotriazole group: 2-(2-hydroxy-5-methylphenyl)benzotriazole (UV-P), 2-tert-butyl-6-(5-chloro-2H-benzotriazol-2-yl)-4-methylphenol (UV-326), 2,4-di-tert-butyl-6-(5-chloro2H-benzotriazol-2-yl)phenol (UV-327), 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV-328), and 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol (UV-329). The oxidation procedure has been optimized based on the design of experiments (DoE) methodology. The oxidation of benzotriazoles follows first order kinetics. The oxidation products of each benzotriazole were investigated, and the oxidation mechanisms of the tested compounds were proposed.pl
dc.language.isoenpl
dc.publisherMDPIpl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectbenzotriazole UV stabilizerspl
dc.subjectperacetic acidpl
dc.subjectadvanced oxidation processespl
dc.subjectiron ionspl
dc.subjectcobalt ionspl
dc.titleDegradation of Benzotriazole UV Stabilizers in PAA/d-Electron Metal Ions Systems—Removal Kinetics, Products and Mechanism Evaluationpl
dc.typeArticlepl
dc.rights.holder© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)pl
dc.identifier.doi10.3390/molecules27103349-
dc.description.EmailDariusz Kiejza: d.kiejza@uwb.edu.plpl
dc.description.EmailJoanna Karpińska: joasia@uwb.edu.plpl
dc.description.AffiliationDariusz Kiejza - Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciołkowskiego 1K St.,15-245 Białystok, Polandpl
dc.description.AffiliationJoanna Karpińska - Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K St., 15-245 Białystok, Polandpl
dc.description.AffiliationUrszula Kotowska - Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K St., 15-245 Białystok, Polandpl
dc.description.referencesUV Absorbers Market Global Forecast to 2022|MarketsandMarkets. Available online: https://www.marketsandmarkets.com/Market-Reports/uv-absorber-market-39452163.html (accessed on 26 February 2022).pl
dc.description.referencesUV Stabilizers. In Handbook of UV Degradation and Stabilization; Elsevier: Amsterdam, The Netherlands, 2015; pp. 67–139.pl
dc.description.referencesHeller, H.; Keller, E.; Land, B.; Gysling, H.; Basel, N.; Mindermann, F. United States Patent Office Ultraviolet Light Absorbed Composition of Matter. US3004896A, 17 October 1961.pl
dc.description.referencesCantwell, M.G.; Sullivan, J.C.; Burgess, R.M. Benzotriazoles: History, Environmental Distribution, and Potential Ecological Effects. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2015; Volume 67, pp. 513–545.pl
dc.description.referencesSmyrniotakis, C.G.; Archontaki, H.A. Development and Validation of a Non-Aqueous Reversed-Phase High-Performance Liquid Chromatographic Method for the Determination of Four Chemical UV Filters in Suncare Formulations. J. Chromatogr. A 2004, 1031, 319–324.pl
dc.description.referencesWang, X.; Wang, J.; Du, T.; Kou, H.; Du, X.; Lu, X. Determination of Six Benzotriazole Ultraviolet Filters in Water and Cosmetic Samples by Graphene Sponge-Based Solid-Phase Extraction Followed by High-Performance Liquid Chromatography. Anal. Bioanal. Chem. 2018, 410, 6955–6962.pl
dc.description.referencesOECD Existing Chemicals Database. Available online: http://webnet.oecd.org/hpv/ui/Search.aspx (accessed on 7 July 2021).pl
dc.description.referencesSPIN Substances in Preparations in Nordic Countries. Available online: http://spin2000.net/ (accessed on 7 July 2021).pl
dc.description.referencesParajulee, A.; Lei, Y.D.; Kananathalingam, A.; Mitchell, C.P.J.; Wania, F. Investigating the Sources and Transport of Benzotriazole UV Stabilizers during Rainfall and Snowmelt across an Urbanization Gradient. Environ. Sci. Technol. 2018, 52, 2595–2602.pl
dc.description.referencesZhao, X.; Zhang, Z.F.; Xu, L.; Liu, L.Y.; Song, W.W.; Zhu, F.J.; Li, Y.F.; Ma, W.L. Occurrence and Fate of Benzotriazoles UV Filters in a Typical Residential Wastewater Treatment Plant in Harbin, China. Environ. Pollut. 2017, 227, 215–222.pl
dc.description.referencesRuan, T.; Liu, R.; Fu, Q.; Wang, T.; Wang, Y.; Song, S.; Wang, P.; Teng, M.; Jiang, G. Concentrations and Composition Profiles of Benzotriazole UV Stabilizers in Municipal Sewage Sludge in China. Environ. Sci. Technol. 2012, 46, 2071–2079.pl
dc.description.referencesMontesdeoca-Esponda, S.; Álvarez-Raya, C.; Torres-Padrón, M.E.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Monitoring and Environmental Risk Assessment of Benzotriazole UV Stabilizers in the Sewage and Coastal Environment of Gran Canaria (Canary Islands, Spain). J. Environ. Manag. 2019, 233, 567–575.pl
dc.description.referencesCasado, J.; Rodríguez, I.; Carpinteiro, I.; Ramil, M.; Cela, R. Gas Chromatography Quadrupole Time-of-Flight Mass Spectrometry Determination of Benzotriazole Ultraviolet Stabilizers in Sludge Samples. J. Chromatogr. A 2013, 1293, 126–132.pl
dc.description.referencesZhang, Z.; Ren, N.; Li, Y.F.; Kunisue, T.; Gao, D.; Kannan, K. Determination of Benzotriazole and Benzophenone UV Filters in Sediment and Sewage Sludge. Environ. Sci. Technol. 2011, 45, 3909–3916.pl
dc.description.referencesKotowska, U.; Struk-Sokołowska, J.; Piekutin, J. Simultaneous Determination of Low Molecule Benzotriazoles and Benzotriazole UV Stabilizers in Wastewater by Ultrasound-Assisted Emulsification Microextraction Followed by GC–MS Detection. Sci. Rep. 2021, 11, 10098.pl
dc.description.referencesLiu, R.; Ruan, T.; Wang, T.; Song, S.; Guo, F.; Jiang, G. Determination of Nine Benzotriazole UV Stabilizers in Environmental Water Samples by Automated On-Line Solid Phase Extraction Coupled with High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Talanta 2014, 120, 158–166.pl
dc.description.referencesNakata, H.; Murata, S.; Filatreau, J. Occurrence and Concentrations of Benzotriazole UV Stabilizers in Marine Organisms and Sediments from the Ariake Sea, Japan. Environ. Sci. Technol. 2009, 43, 6920–6926.pl
dc.description.referencesNakata, H.; Shinohara, R.I.; Murata, S.; Watanabe, M. Detection of Benzotriazole UV Stabilizers in the Blubber of Marine Mammals by Gas Chromatography-High Resolution Mass Spectrometry (GC-HRMS). J. Environ. Monit. 2010, 12, 2088–2092.pl
dc.description.referencesApel, C.; Tang, J.; Ebinghaus, R. Environmental Occurrence and Distribution of Organic UV Stabilizers and UV Filters in the Sediment of Chinese Bohai and Yellow Seas. Environ. Pollut. 2018, 235, 85–94.pl
dc.description.referencesWick, A.; Jacobs, B.; Kunkel, U.; Heininger, P.; Ternes, T.A. Benzotriazole UV Stabilizers in Sediments, Suspended Particulate Matter and Fish of German Rivers: New Insights into Occurrence, Time Trends and Persistency. Environ. Pollut. 2016, 212, 401–412.pl
dc.description.referencesVimalkumar, K.; Arun, E.; Krishna-Kumar, S.; Poopal, R.K.; Nikhil, N.P.; Subramanian, A.; Babu-Rajendran, R. Occurrence of Triclocarban and Benzotriazole Ultraviolet Stabilizers in Water, Sediment, and Fish from Indian Rivers. Sci. Total Environ. 2018, 625, 1351–1360.pl
dc.description.referencesLu, Z.; De Silva, A.O.; Zhou, W.; Tetreault, G.R.; de Solla, S.R.; Fair, P.A.; Houde, M.; Bossart, G.; Muir, D.C.G. Substituted Diphenylamine Antioxidants and Benzotriazole UV Stabilizers in Blood Plasma of Fish, Turtles, Birds and Dolphins from North America. Sci. Total Environ. 2019, 647, 182–190.pl
dc.description.referencesLu, Z.; De Silva, A.O.; Peart, T.E.; Cook, C.J.; Tetreault, G.R.; Servos, M.R.; Muir, D.C.G. Distribution, Partitioning and Bioaccumulation of Substituted Diphenylamine Antioxidants and Benzotriazole UV Stabilizers in an Urban Creek in Canada. Environ. Sci. Technol. 2016, 17, 9089–9097.pl
dc.description.referencesKim, J.W.; Isobe, T.; Malarvannan, G.; Sudaryanto, A.; Chang, K.H.; Prudente, M.; Tanabe, S. Contamination of Benzotriazole Ultraviolet Stabilizers in House Dust from the Philippines: Implications on Human Exposure. Sci. Total Environ. 2012, 424, 174–181.pl
dc.description.referencesCarpinteiro, I.; Abuín, B.; Rodríguez, I.; Ramil, M.; Cela, R. Pressurized Solvent Extraction Followed by Gas Chromatography Tandem Mass Spectrometry for the Determination of Benzotriazole Light Stabilizers in Indoor Dust. J. Chromatogr. A 2010, 1217, 3729–3735.pl
dc.description.referencesMaceira, A.; Borrull, F.; Marcé, R.M. Occurrence of Plastic Additives in Outdoor Air Particulate Matters from Two Industrial Parks of Tarragona, Spain: Human Inhalation Intake Risk Assessment. J. Hazard. Mater. 2019, 373, 649–659.pl
dc.description.referencesMontesdeoca-Esponda, S.; Torres-Padrón, M.E.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Fate and Distribution of Benzotriazole UV Filters and Stabilizers in Environmental Compartments from Gran Canaria Island (Spain): A Comparison Study. Sci. Total Environ. 2021, 756, 144086.pl
dc.description.referencesGimeno-Monforte, S.; Montesdeoca-Esponda, S.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Castro, Ó.; Pocurull, E.; Borrull, F. Multiresidue Analysis of Organic UV Filters and UV Stabilizers in Fish of Common Consumption. Foods 2020, 9, 1827.pl
dc.description.referencesKim, J.-W.; Ramaswamy, R.; Chang, K.-H.; Isobe, T.; Tanabe, S. Multiresidue Analytical Method for the Determination of Antimicrobials, Preservatives, Benzotriazole UV Stabilizers, Flame Retardants and Plasticizers in Fish Using Ultra High Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry. J. Chromatogr. A 2011, 1218, 3511–3520.pl
dc.description.referencesLu, Z.; De Silva, A.O.; Peart, T.E.; Cook, C.J.; Tetreault, G.R. Tissue Distribution of Substituted Diphenylamine Antioxidants and Benzotriazole Ultraviolet Stabilizers in White Sucker (Catostomus Commersonii) from an Urban Creek in Canada. Environ. Sci. Technol. Lett. 2017, 4, 433–438.pl
dc.description.referencesZhu, M.Q.; Cui, R. Determination of UV-327 and UV-328 in Mouse Plasma by High Performance Liquid Chromatography. Beijing Da Xue Xue Bao. 2020, 52, 591–596.pl
dc.description.referencesLee, S.; Kim, S.; Park, J.; Kim, H.J.; Jae Lee, J.; Choi, G.; Choi, S.; Kim, S.; Young Kim, S.; Choi, K.; et al. Synthetic Musk Compounds and Benzotriazole Ultraviolet Stabilizers in Breast Milk: Occurrence, Time-Course Variation and Infant Health Risk. Environ. Res. 2015, 140, 466–473.pl
dc.description.referencesKim, J.W.; Chang, K.H.; Prudente, M.; Viet, P.H.; Takahashi, S.; Tanabe, S.; Kunisue, T.; Isobe, T. Occurrence of Benzotriazole Ultraviolet Stabilizers (BUVSs) in Human Breast Milk from Three Asian Countries. Sci. Total Environ. 2019, 655, 1081–1088.pl
dc.description.referencesMolins-Delgado, D.; Olmo-Campos, M.d.M.; Valeta-Juan, G.; Valeta-Juan, G.; Pleguezuelos-Hernández, V.; Barceló, D.; Díaz-Cruz, M.S. Determination of UV Filters in Human Breast Milk Using Turbulent Flow Chromatography and Babies’ Daily Intake Estimation. Environ. Res. 2018, 161, 532–539.pl
dc.description.referencesEnvironment and Climate Change Canada; Health Canada. Draft Screening Assessment Benzotriazoles and Benzothiazoles Group; Government of Canada: Ottawa, ON, Canada, 2021.pl
dc.description.referencesNakata, H.; Shinohara, R.I.; Nakazawa, Y.; Isobe, T.; Sudaryanto, A.; Subramanian, A.; Tanabe, S.; Zakaria, M.P.; Zheng, G.J.; Lam, P.K.S.; et al. Asia-Pacific Mussel Watch for Emerging Pollutants: Distribution of Synthetic Musks and Benzotriazole UV Stabilizers in Asian and US Coastal Waters. Mar. Pollut. Bull. 2012, 64, 2211–2218.pl
dc.description.referencesNagayoshi, H.; Kakimoto, K.; Takagi, S.; Konishi, Y.; Kajimura, K.; Matsuda, T. Benzotriazole Ultraviolet Stabilizers Show Potent Activities as Human Aryl Hydrocarbon Receptor Ligands. Environ. Sci. Technol. 2015, 49, 578–587.pl
dc.description.referencesGeneva International Conference Centre (CICG). Ninth Meeting of the Conference of the Parties to the Stockholm Convention. In Proceedings of the Stockholm Convention of Persistent Organic Pollutants Report of the Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants on the Work of Its Ninth Meeting, Geneva, Switzerland, 29 April–10 May 2019.pl
dc.description.referencesFent, K.; Chew, G.; Li, J.; Gomez, E. Benzotriazole UV-Stabilizers and Benzotriazole: Antiandrogenic Activity in Vitro and Activation of Aryl Hydrocarbon Receptor Pathway in Zebrafish Eleuthero-Embryos. Sci. Total Environ. 2014, 482–483, 125–136.pl
dc.description.referencesFeng, H.; Cao, H.; Li, J.; Zhang, H.; Xue, Q.; Liu, X.; Zhang, A.; Fu, J. Estrogenic Activity of Benzotriazole UV Stabilizers Evaluated through in Vitro Assays and Computational Studies. Sci. Total Environ. 2020, 727, 138549.pl
dc.description.referencesFischer, C.; Leibold, E.; Göen, T. Identification of in Vitro Phase I Metabolites of Benzotriazole UV Stabilizer UV-327 Using HPLC Coupled with Mass Spectrometry. Toxicol. Vitr. 2020, 68, 104932.pl
dc.description.referencesDenghel, H.; Leibold, E.; Göen, T. Oxidative Phase I Metabolism of the UV Absorber 2-(2H-Benzotriazol-2-Yl)-4,6-Di-TertPentylphenol (UV 328) in an in Vitro Model with Human Liver Microsomes. Toxicol. Vitr. 2019, 60, 313–322.pl
dc.description.referencesDenghel, H.; Göen, T. Determination of the UV Absorber 2-(2H-Benzotriazol-2-Yl)-4,6-Di-Tert-Pentylphenol (UV 328) and Its Oxidative Metabolites in Human Urine by Dispersive Liquid-Liquid Microextraction and GC–MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1144, 122071.pl
dc.description.referencesDenghel, H.; Göen, T. Dispersive Liquid-Liquid Microextraction (DLLME) and External Real Matrix Calibration for the Determination of the UV Absorber 2-(2H-Benzotriazol-2-Yl)-4,6-Di-Tert-Pentylphenol (UV 328) and Its Metabolites in Human Blood. Talanta 2021, 223, 121699.pl
dc.description.referencesZhuang, S.; Lv, X.; Pan, L.; Lu, L.; Ge, Z.; Wang, J.; Wang, J.; Liu, J.; Liu, W.; Zhang, C. Benzotriazole UV 328 and UV-P Showed Distinct Antiandrogenic Activity upon Human CYP3A4-Mediated Biotransformation. Environ. Pollut. 2017, 220, 616–624.pl
dc.description.referencesLiang, X.; Li, J.; Martyniuk, C.J.; Wang, J.; Mao, Y.; Lu, H.; Zha, J. Benzotriazole Ultraviolet Stabilizers Alter the Expression of the Thyroid Hormone Pathway in Zebrafish (Danio Rerio) Embryos. Chemosphere 2017, 182, 22–30.pl
dc.description.referencesHemalatha, D.; Rangasamy, B.; Nataraj, B.; Maharajan, K.; Narayanasamy, A.; Ramesh, M. Transcriptional, Biochemical and Histological Alterations in Adult Zebrafish (Danio Rerio) Exposed to Benzotriazole Ultraviolet Stabilizer-328. Sci. Total Environ. 2020, 739, 139851.pl
dc.description.referencesGiraudo, M.; Cottin, G.; Esperanza, M.; Gagnon, P.; Silva, A.O.D.; Houde, M. Transcriptional and Cellular Effects of Benzotriazole UV Stabilizers UV-234 and UV-328 in the Freshwater Invertebrates Chlamydomonas Reinhardtii and Daphnia Magna. Environ. Toxicol. Chem. 2017, 36, 3333–3342.pl
dc.description.referencesKim, J.W.; Chang, K.H.; Isobe, T.; Tanabe, S. Acute Toxicity of Benzotriazole Ultraviolet Stabilizers on Freshwater Crustacean (Daphnia Pulex). J. Toxicol. Sci. 2011, 36, 247–251.pl
dc.description.referencesLee, J.K.; Kim, K.B.; Lee, J.D.; Shin, C.Y.; Kwack, S.J.; Lee, B.M.; Lee, J.Y. Risk Assessment of Drometrizole, a Cosmetic Ingredient Used as an Ultraviolet Light Absorber. Toxicol. Res. 2019, 35, 119–129.pl
dc.description.references2-(2H-Benzotriazol-2-Yl)-4,6-Ditertpentylphenol—Brief Profile—ECHA. Available online: https://www.echa.europa.eu/de/web/guest/brief-profile/-/briefprofile/100.043.062 (accessed on 8 July 2021).pl
dc.description.referencesAnnex XV-Identification of UV-328 as SVHC Annex XV Dossier. Available online: https://echa.europa.eu/documents/10162/13641/rac_opinion_annex_UV-328_en.pdf/6d264702-380f-45d4-8022-fb59ca44740f (accessed on 8 July 2021).pl
dc.description.referencesLuukkonen, T.; Teeriniemi, J.; Prokkola, H.; Rämö, J.; Lassi, U. Chemical Aspects of Peracetic Acid Based Wastewater Disinfection. Water SA 2014, 40, 73–80.pl
dc.description.referencesKiejza, D.; Kotowska, U.; Polińska, W.; Karpińska, J. Peracids - New Oxidants in Advanced Oxidation Processes: The Use of Peracetic Acid, Peroxymonosulfate, and Persulfate Salts in the Removal of Organic Micropollutants of Emerging Concern—A Review. Sci. Total Environ. 2021, 790, 148195.pl
dc.description.referencesAo, X.-w.; Eloranta, J.; Huang, C.H.; Santoro, D.; Sun, W.-j.; Lu, Z.-d.; Li, C. Peracetic Acid-Based Advanced Oxidation Processes for Decontamination and Disinfection of Water: A Review. Water Res. 2021, 188, 116479.pl
dc.description.referencesKim, J.; Huang, C.-H. Reactivity of Peracetic Acid with Organic Compounds: A Critical Review. ACS ES&T Water 2021, 1, 15–33.pl
dc.description.referencesCai, M.; Sun, P.; Zhang, L.; Huang, C.H. UV/Peracetic Acid for Degradation of Pharmaceuticals and Reactive Species Evaluation. Environ. Sci. Technol. 2017, 51, 14217–14224.pl
dc.description.referencesHollman, J.; Dominic, J.A.; Achari, G. Degradation of Pharmaceutical Mixtures in Aqueous Solutions Using UV/Peracetic Acid Process: Kinetics, Degradation Pathways and Comparison with UV/H2O2. Chemosphere 2020, 248, 125911.pl
dc.description.referencesZhang, L.; Liu, Y.; Fu, Y. Degradation Kinetics and Mechanism of Diclofenac by UV/Peracetic Acid. RSC Adv. 2020, 10, 9907–9916.pl
dc.description.referencesRizzo, L.; Agovino, T.; Nahim-Granados, S.; Castro-Alférez, M.; Fernández-Ibáñez, P.; Polo-López, M.I. Tertiary Treatment of Urban Wastewater by Solar and UV-C Driven Advanced Oxidation with Peracetic Acid: Effect on Contaminants of Emerging Concern and Antibiotic Resistance. Water Res. 2019, 149, 272–281.pl
dc.description.referencesKim, J.; Du, P.; Liu, W.; Luo, C.; Zhao, H.; Huang, C.H. Cobalt/Peracetic Acid: Advanced Oxidation of Aromatic Organic Compounds by Acetylperoxyl Radicals. Environ. Sci. Technol. 2020, 54, 5268–5278.pl
dc.description.referencesWang, Z.; Wang, J.; Xiong, B.; Bai, F.; Wang, S.; Wan, Y.; Zhang, L.; Xie, P.; Wiesner, M.R. Application of Cobalt/Peracetic Acid to Degrade Sulfamethoxazole at Neutral Condition: Efficiency and Mechanisms. Environ. Sci. Technol. 2019, 54, 464–475.pl
dc.description.referencesPopov, E.; Eloranta, J.; Hietapelto, V.; Vuorenpalo, V.M.; Aksela, R.; Jäkärä, J. Mechanism of Decomposition of Peracetic Acid by Manganese Ions and Diethylenetriaminepentaacetic Acid (DTPA). Holzforschung 2005, 59, 507–513.pl
dc.description.referencesZhang, X.-Z.; Francis, R.C.; Dutton, D.B.; Hill, R.T. Decomposition of Peracetic Acid Catalyzed by Cobalt(II) and Vanadium(V). Can. J. Chem. 1998, 76, 1064–1069.pl
dc.description.referencesZhou, F.; Lu, C.; Yao, Y.; Sun, L.; Gong, F.; Li, D.; Pei, K.; Lu, W.; Chen, W. Activated Carbon Fibers as an Effective Metal-Free Catalyst for Peracetic Acid Activation: Implications for the Removal of Organic Pollutants. Chem. Eng. J. 2015, 281, 953–960.pl
dc.description.referencesWu, W.; Tian, D.; Liu, T.; Chen, J.; Huang, T.; Zhou, X.; Zhang, Y. Degradation of Organic Compounds by Peracetic Acid Activated with Co3O4: A Novel Advanced Oxidation Process and Organic Radical Contribution. Chem. Eng. J. 2020, 394, 124938.pl
dc.description.referencesRokhina, E.V.; Makarova, K.; Lahtinen, M.; Golovina, E.A.; Van As, H.; Virkutyte, J. Ultrasound-Assisted MnO2 Catalyzed Homolysis of Peracetic Acid for Phenol Degradation: The Assessment of Process Chemistry and Kinetics. Chem. Eng. J. 2013, 221, 476–486.pl
dc.description.referencesWang, J.; Xiong, B.; Miao, L.; Wang, S.; Xie, P.; Wang, Z.; Ma, J. Applying a Novel Advanced Oxidation Process of Activated Peracetic Acid by CoFe2O4 to Efficiently Degrade Sulfamethoxazole. Appl. Catal. B Environ. 2021, 280, 119422.pl
dc.description.referencesWang, J.; Wang, Z.; Cheng, Y.; Cao, L.; Bai, F.; Yue, S.; Xie, P.; Ma, J. Molybdenum Disulfide (MoS2): A Novel Activator of Peracetic Acid for the Degradation of Sulfonamide Antibiotics. Water Res. 2021, 201, 117291.pl
dc.description.referencesZhou, X.; Hao, W.; Zhang, L.; Liang, B.; Sun, X.; Chen, J. Activation of Peracetic Acid with Lanthanum Cobaltite Perovskite for Sulfamethoxazole Degradation under a Neutral PH: The Contribution of Organic Radicals. Molecules 2020, 25, 2725.pl
dc.description.referencesWang, S.; Wang, H.; Liu, Y.; Fu, Y. Effective Degradation of Sulfamethoxazole with Fe2+-Zeolite/Peracetic Acid. Sep. Purif. Technol. 2020, 233, 115973.pl
dc.description.referencesLiu, Y.S.; Ying, G.G.; Shareef, A.; Kookana, R.S. Occurrence and Removal of Benzotriazoles and Ultraviolet Filters in a Municipal Wastewater Treatment Plant. Environ. Pollut. 2012, 165, 225–232.pl
dc.description.referencesChen, X.; Wang, J.; Chen, J.; Zhou, C.; Cui, F.; Sun, G. Photodegradation of 2-(2-Hydroxy-5-Methylphenyl)Benzotriazole (UV-P) in Coastal Seawaters: Important Role of DOM. J. Environ. Sci. (China) 2019, 85, 129–137.pl
dc.description.referencesPavanello, A.; Gomez-Mendoza, M.; de la Peña O’Shea, V.A.; Miranda, M.A.; Marin, M.L. Degradation of Benzotriazole UVStabilizers in the Presence of Organic Photosensitizers and Visible Light: A Time-Resolved Mechanistic Study. J. Photochem. Photobiol. B Biol. 2022, 230, 112444.pl
dc.description.referencesKim, J.; Zhang, T.; Liu, W.; Du, P.; Dobson, J.T.; Huang, C.H. Advanced Oxidation Process with Peracetic Acid and Fe(II) for Contaminant Degradation. Environ. Sci. Technol. 2019, 53, 13312–13322.pl
dc.description.referencesEl-Asmy, H.A.; Butler, I.S.; Mouhri, Z.S.; Jean-Claude, B.J.; Emmam, M.S.; Mostafa, S.I. Zinc(II), Ruthenium(II), Rhodium(III), Palladium(II), Silver(I), Platinum(II) and MoO(2+)/2 Complexes of 2-(20-Hydroxy-50-Methylphenyl)-Benzotriazole as Simple or Primary Ligand and 2,20-Bipyridyl, 9,10-Phenanthroline or Triphenylphosphine as Secondary Ligands: Structure and Anticancer Activity. J. Mol. Struct. 2014, 1059, 193–201.pl
dc.description.referencesAlfassi, Z.B.; Schuler, R.H. Reaction of Azide Radicals with Aromatic Compounds. Azide as a Selective Oxidant. J. Phys. Chem. 1985, 89, 3359–3363.pl
dc.description.referencesMcKeown, E.; Waters, W.A. The Oxidation of Organic Compounds by “Singlet” Oxygen. J. Chem. Soc. B Phys. Org. 1966, 1040–1046.pl
dc.description.referencesLai, H.J.; Ying, G.G.; Ma, Y.B.; Chen, Z.F.; Chen, F.; Liu, Y.S. Occurrence and Dissipation of Benzotriazoles and Benzotriazole Ultraviolet Stabilizers in Biosolid-Amended Soils. Environ. Toxicol. Chem. 2014, 33, 761–767.pl
dc.description.referencesBrandt, M.; Becker, E.; Jöhncke, U.; Sättler, D.; Schulte, C. A Weight-of-Evidence Approach to Assess Chemicals: Case Study on the Assessment of Persistence of 4,6-Substituted Phenolic Benzotriazoles in the Environment. Environ. Sci. Eur. 2016, 28, 1–14.pl
dc.description.referencesWu, J.; Xiong, Q.; Liang, J.; He, Q.; Yang, D.; Deng, R.; Chen, Y. Degradation of Benzotriazole by DBD Plasma and Peroxymonosulfate: Mechanism, Degradation Pathway and Potential Toxicity. Chem. Eng. J. 2020, 384, 123300.pl
dc.description.referencesLuukkonen, T. New Adsorption and Oxidation-Based Approaches for Water and Wastewater Treatment; Studies Regarding Organic Peracids, Boiler-Water Treatment, and Geopolymers, University of Oulu Graduate School; University of Oulu, Faculty of Science: Oulu, Finland, 2016.pl
dc.description.firstpage1pl
dc.description.lastpage16pl
dc.identifier.citation2Moleculespl
dc.identifier.orcid0000-0003-3451-511X-
dc.identifier.orcid0000-0002-6100-0691-
dc.identifier.orcid0000-0002-0595-0502-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
D_Kiejza_J_Karpinska_U_Kotowska_Degradation_of_Benzotriazole_UV_Stabilizers.pdf2,12 MBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons