REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/15316
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorKiszkiel-Taudul, Ilona-
dc.contributor.authorStankiewicz, Patrycja-
dc.date.accessioned2023-09-20T11:07:20Z-
dc.date.available2023-09-20T11:07:20Z-
dc.date.issued2023-
dc.identifier.citationJournal of Agricultural and Food Chemistry, 2023, 71, 11716-11725pl
dc.identifier.issn0021-8561-
dc.identifier.urihttp://hdl.handle.net/11320/15316-
dc.descriptionResearch data: Repozytorium Otwartych Danych RepOD (DOI: https://doi.org/10.18150/PG37XX)pl
dc.description.abstractThe occurrence of tigecycline (TGC), a new first glycylcycline antibiotic residues in food products harmfully influences potential human consumers health. Therefore, analysts are forced to develop new microextraction methods connected with modern extractants for effective isolation of this compound. For this purpose, deep eutectic solvents (DES) as the extraction media were used. Liquid−liquid microextraction (LLME) of tigecycline from milk samples with application of the hydrophobic deep eutectic solvents: decanoic acid:thymol (1:1), thymol:camphor (2:1), dodecanoic acid:menthol (2:1), and dodecanoic acid:dodecanol (1:1) was developed. The studied samples were subjected to a deproteinization process using trichloroacetic acid solution and acetonitrile. The optimal microextraction parameters, molar ratio of DES components, amount of extraction solvents, pH of milk sample, shaking, and centrifugation time, were chosen. Tigecycline in the obtained microextracts of deep eutectic solvents was analyzed using a liquid chromatographic technique connected with a tandem mass spectrometry (LC-MS/MS) system. The limits of detection and quantification values for TGC determination followed by DES-LLME-LC-MS/MS method were in the 1.8 × 10−11 mol L−1 (0.01 μg kg−1) to 4.0 × 10−9 mol L−1 (2.28 μg kg−1) and 5.5 × 10−11 mol L−1 (0.03 μg kg−1) to 1.2 × 10−8 mol L−1 (6.84 μg kg−1) ranges, respectively. The RSD values of precision were in the range 1.4−7.8% (intraday) and 5.4−11.7% (interday). The developed procedures were used for the determination of tigecycline in different bovine milk samples.pl
dc.description.sponsorshipThis research was funded in part by National Science Centre, Poland, no. 2021/05/X/ST4/00517 (Miniature 5).pl
dc.description.sponsorshipThis article has received financial support from the Polish Ministry of Education and Science under subsidy for maintaining the research potential of the Faculty of Chemistry, University of Bialystok.pl
dc.description.sponsorshipThe measurements were carried out on apparatus purchased by EU founds funds via project BioNanoTechno no. POPW.013.00-20-00411.pl
dc.language.isoenpl
dc.publisherACS Publicationspl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjecttigecyclinepl
dc.subjectantibacterial agentspl
dc.subjecthydrophobic deep eutectic solventspl
dc.subjectliquid−liquid microextractionpl
dc.subjectliquid chromatographypl
dc.subjecttandem mass spectrometrypl
dc.subjectdairy productspl
dc.titleMicroextraction of tigecycline using deep eutectic solvents and its determination in milk by LC-MS/MS methodpl
dc.typeArticlepl
dc.identifier.doi10.1021/acs.jafc.3c03023-
dc.description.EmailIlona Kiszkiel-Taudul: i.kiszkiel@uwb.edu.plpl
dc.description.AffiliationIlona Kiszkiel-Taudul − Chemical Department, University of Bialystokpl
dc.description.AffiliationPatrycja Stankiewicz − Chemical Department, University of Bialystokpl
dc.description.referencesBender, J. K.; Cattoir, V.; Hegstad, K.; Sadowy, E.; Coque, T. M.; Westh, H.; Hammerum, A. M.; Schaffer, K.; Burns, K.; Murchan, S.; et al. Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist. Updat. 2018, 40, 25−39.pl
dc.description.referencesTu, Y.-P. Dissociative protonation and long-range proton migration: The chemistry of singly- and doubly-protonated tigecycline. Int. J. Mass. Spectrom. 2018, 434, 164−171.pl
dc.description.referencesLeng, B.; Yan, G.; Wang, C.; Shen, C.; Zhang, W.; Wang, W. Dose optimization based on pharmacokinetic/pharmacodynamic target of tigecycline. J. Glob. Antimicrob. Resist. 2021, 25, 315−322.pl
dc.description.referencesde Jong, A.; Simjee, S.; El Garch, F.; Moyaert, H.; Rose, M.; Youala, M.; Dry, M. Antimicrobial susceptibility of enterococci recovered from healthy cattle, pigs and chickens in nine EU countries (EASSA Study) to critically important antibiotics. Vet. Microbiol. 2018, 216, 168−175.pl
dc.description.referencesDuan, D.; Fang, X.; Li, K. A peroxidase-like nanoenzyme based on strontium(II)-ion-exchanged Prussian blue analogue derivative SrCoO3/Co3O4 nanospheres and carbon quantum dots for the colorimetric detection of tigecycline in river water. Talanta 2022, 240, 123112.pl
dc.description.referencesMeagher, A. K.; Ambrose, P. G.; Grasela, T. H.; Ellis-Grosse, E. J. Pharmacokinetic/ pharmacodynamic profile for tigecycline - a new glycylcycline antimicrobial agent. Diagn. Microbiol. Infect. Dis. 2005, 52, 165−171.pl
dc.description.referencesWang, G.; Zhang, H. C.; Liu, J.; Wang, J. P. A receptor-based chemiluminescence enzyme linked immunosorbent assay for determination of tetracyclines in milk. Anal. Biochem. 2019, 564−565, 40−46.pl
dc.description.referencesXia, W. Q.; Cui, P. L.; Wang, J. P.; Liu, J. Synthesis of photoaffinity labeled activity-based protein profiling probe and production of natural TetR protein for immunoassay of tetracyclines in milk. Microchem. J. 2021, 170, 106779.pl
dc.description.referencesSereshti, H.; Semnani Jazani, S.; Nouri, N.; Shams, G. Dispersive liquid-liquid microextraction based on hydrophobic deep eutectic solvents: Application for tetracyclines monitoring in milk. Microchem. J. 2020, 158, 105269.pl
dc.description.referencesWang, X.; Lu, Y.; Shi, L.; Yang, D.; Yang, Y. Novel low viscous hydrophobic deep eutectic solvents liquid-liquid microextraction combined with acid base induction for the determination of phthalate esters in the packed milk samples. Microchem. J. 2020, 159, 105332.pl
dc.description.referencesCanadas, R.; Gonzalez-Miquel, M.; Gonzalez, E. J.; Diaz, I.; Rodriguez, M. Hydrophobic eutectic solvents for extraction of natural phenolic antioxidants from winery wastewater. Sep. Purif. Technol. 2021, 254, 117590.pl
dc.description.referencesFattahi, N.; Pirsaheb, M.; Moradi, M.; Mohebbi, A.; Karimi, P.; Hashemi, B. Dispersive liquid-liquid microextraction-assisted by deep eutectic solvent for the extraction of different chlorophenols from water samples followed by analysis using gas chromatography-electron capture detection. Microchem. J. 2022, 180, 107608.pl
dc.description.referencesNemati, M.; Farajzadeh, M. A.; Mogaddam, M. R. A.; Mohebbi, A.; Azimi, A. R.; Fattahi, N.; Tuzen, M. Development of a gascontrolled deep eutectic solvent-based evaporation-assisted dispersive liquid-liquid microextraction approach for the extraction of pyrethroid pesticides from fruit juices. Microchem. J. 2022, 175, 107196.pl
dc.description.referencesNemati, M.; Tuzen, M.; Farazajdeh, M. A.; Kaya, S.; Afshar Mogaddam, M. R. Development of dispersive solid-liquid extraction method based on organic polymers followed by deep eutectic solvents elution; application in extraction of some pesticides from milk samples prior to their determination by HPLC-MS/MS. Anal. Chim. Acta 2022, 22, 339570.pl
dc.description.referencesShishov, A.; Pochivalov, A.; Nugbienyo, L.; Andruch, V.; Bulatov, A. Deep eutectic solvents are not only effective extractants. Trends Anal. Chem. 2020, 129, 115956.pl
dc.description.referencesChaabene, N.; Ngo, K.; Turmine, M.; Vivier, V. New hydrophobic deep eutectic solvent for electrochemical applications. J. Mol. Liq. 2020, 319, 114198.pl
dc.description.referencesPochivalov, A.; Cherkashina, K.; Shishov, A.; Bulatov, A. Microextraction of sulfonamides from milk samples based on hydrophobic deep eutectic solvent formation by pH adjusting. J. Mol. Liq. 2021, 339, 116827.pl
dc.description.referencesAhmadi-Jouibari, T.; Shaahmadi, Z.; Moradi, M.; Fattahi, N. Extraction and determination of strobilurin fungicides residues in apple samples using ultrasound-assisted dispersive liquid-liquid microextraction based on a novel hydrophobic deep eutectic solvent followed by H.P.L.C-U.V. Food. Addit. Contam. A 2022, 39, 105−115.pl
dc.description.referencesJouybari, T. A.; Jouybari, H. A.; Shamsipur, M.; Babajani, N.; Kiani, A.; Nematifar, Z.; Sharafi, K.; Moradi, M.; Fattahi, N. Trace determination of triazine herbicides in fruit and vegetables using novel hydrophobic deep eutectic solvent-based dispersive liquid-liquid microextraction followed by high-performance liquid chromatography- ultraviolet. J. Sep. Sci. 2022, 45, 4448−4459.pl
dc.description.referencesLi, T.; Song, Y.; Dong, Z.; Shi, Y.; Fan, J. Hydrophobic deep eutectic solvents as extractants for the determination of bisphenols from food-contacted plastics by high performance liquid chromatography with fluorescence detection. J. Chromatogr. A 2020, 1621, 461087.pl
dc.description.referencesAbdi, K.; Ezoddin, M.; Pirooznia, N. Temperature-controlled liquid-liquid microextraction using a biocompatible hydrophobic deep eutectic solvent for microextraction of palladium from catalytic converter and road dust samples prior to ETAAS determination. Microchem. J. 2020, 157, 104999.pl
dc.description.referencesCao, J.; Wang, C.; Shi, L.; Cheng, Y.; Hu, H.; Zeng, B.; Zhao, F. Water based-deep eutectic solvent for ultrasound-assisted liquid-liquid microextraction of parabens in edible oil. Food Chem. 2022, 383, 132586.pl
dc.description.referencesCao, J.; Shi, L.; He, Y.; Liu, Y.; Zhao, F. Effective extraction of parabens from toothpaste by vortex-assisted liquid-phase microextraction based on low viscosity deep eutectic solvent. Microchem. J. 2022, 179, 107590.pl
dc.description.referencesAltunay, N.; Tuzen, M. A simple and green ultrasound liquid-liquid microextraction method based on low viscous hydrophobic deep eutectic solvent for the preconcentration and separation of selenium in water and food samples prior to HG-AAS detection. Food Chem. 2021, 364, 130371.pl
dc.description.referencesde Andrade, D. C.; Monteiro, S. A.; Merib, J. A review on recent applications of deep eutectic solvents in microextraction techniques for the analysis of biological matrices. Adv. Sample Prep. 2022, 1, 100007.pl
dc.description.referencesSereshti, H.; Seraj, M.; Soltani, S.; Rashidi Nodeh, H.; Hossein Shojaee AliAbadi, M.; Taghizadeh, M. Development of a sustainable dispersive liquid-liquid microextraction based on novel hydrophobic and hydrophilic natural deep eutectic solvents for the analysis of multiclass pesticides in water. Microchem. J. 2022, 175, 107226.pl
dc.description.referencesGholami, Z.; Marhamatizadeh, M. H.; Yousefinejad, S.; Rashedinia, M.; Mazloomi, S. M. Vortex-assisted dispersive liquid-liquid microextraction based on hydrophobic deep eutectic solvent for the simultaneous identification of eight synthetic dyes in jellies and drinks using HPLC-PDA. Microchem. J. 2021, 170, 106671.pl
dc.description.referencesHabibollahi, M. H.; Karimyan, K.; Arfaeinia, H.; Mirzaei, N.; Safari, Y.; Akramipour, R.; Sharafi, H.; Fattahi, N. Extraction and determination of heavy metals in soil and vegetables irrigated with treated municipal wastewater using new mode of dispersive liquidliquid microextraction based on the solidified deep eutectic solvent followed by GFAAS. J. Sci. Food Agric. 2019, 99, 656−665.pl
dc.description.referencesSafari, Y.; Karimaei, M.; Sharafi, K.; Arfaeinia, H.; Moradi, M.; Fattahi, N. Persistent sample circulation microextraction combined with graphite furnace atomic absorption spectroscopy for trace determination of heavy metals in fish species marketed in Kermanshah, Iran, and human health risk assessment. J. Sci. Food Agric. 2018, 98, 2915−2924.pl
dc.description.referencesRodriguez-Palazon, M. C.; Arroyo-Manzanares, N.; Vinas, P.; Campillo, N. Metabolomic study of capsaicinoid compounds in urine samples by dispersive liquid-liquid microextraction and ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Microchem. J. 2022, 178, 107373.pl
dc.description.referencesBocato, M. Z.; Cesila, C. A.; Lataro, B. F.; Moraes de Oliveira, A. R.; Campiglia, A. D.; Barbosa, F., Jr. A fast-multiclass method for the determination of 21 endocrine disruptors in human urine by using vortex-assisted dispersive liquid-liquid microextraction (VADLLME) and LC-MS/MS. Environ. Res. 2020, 189, 109883.pl
dc.description.referencesSoori, M. M.; Ghahramani, E.; Kazemian, H.; Al-Musawi, T. J.; Zarrabi, M. Intercalation of tetracycline in nano sheet layered double hydroxide: An insight into UV/VIS spectra analysis. J. Taiwan Inst. Chem. Eng. 2016, 63, 271−285.pl
dc.description.referencesJasiecka-Mikołajczyk, A.; Jaroszewski, J. J. Determination of tigecycline in turkey plasma by LC-MS/MS: validation and application in a pharmacokinetic study. Polish J. Vet. Sci. 2017, 20, 241−249.pl
dc.description.referencesJi, A. J.; Saunders, J. P.; Wadgaonkar, N. D.; Petersen, P. J.; O’Leary, K.; McWilliams, W. E.; Amorusi, P.; Leal, M.; Fluhler, E. N. A novel antibiotic bone assay by liquid chromatography/tandem mass spectrometry for quantitation of tigecycline in rat bone. J. Pharm. Biomed. Anal. 2007, 44, 970−979.pl
dc.description.referencesCazorla-Reyes, R.; Romero-González, R.; Frenich, A. G.; Rodríguez Maresca, M. A.; Martínez Vidal, J. L. Simultaneous analysis of antibiotics in biological samples by ultra high performance liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2014, 89, 203−212.pl
dc.description.referencesGuo, Y.; He, Z.; Gao, P.; Liu, S.; Zhu, Y.; Xie, K.; Dong, Y. Concurrent determination of tigecycline, tetracyclines and their 4-epimer derivatives in chicken muscle isolated from a reversed-phase chromatography system using tandem mass spectrometry. Molecules 2022, 27, 6139.pl
dc.description.referencesJi, A. J.; Saunders, J. P.; Amorusi, P.; Wadgaonkar, N. D.; O’Leary, K.; Leal, M.; Dukart, G.; Marshall, B.; Fluhler, E. N. A sensitive human bone assay for quantitation of tigecycline using LC/MS/MS. J. Pharm. Biomed. Anal. 2008, 48, 866−875.pl
dc.description.referencesXie, F.; Liu, L.; Wang, Y.; Peng, Y.; Li, S. An UPLC-PDA assay for simultaneous determination of seven antibiotics in human plasma. J. Pharm. Biomed. Anal. 2022, 210, 114558.pl
dc.description.referencesWang, G.; Xia, W. Q.; Liu, J. X.; Wang, J. P.; Liu, J. Directional evolution of TetR protein and development of a fluoroimmunoassay for screening of tetracyclines in egg. Microchem. J. 2019, 150, 104184.pl
dc.description.referencesQi, Y.; Liu, G. A UPLC-MS/MS method for simultaneous determination of eight special-grade antimicrobials in human plasma and application in TDM. J. Pharm. Biomed. Anal. 2022, 220, 114964.pl
dc.identifier.eissn1520-5118-
dc.description.volume71pl
dc.description.firstpage11716pl
dc.description.lastpage11725pl
dc.identifier.citation2Journal of Agricultural and Food Chemistrypl
dc.identifier.orcid0000-0001-7168-0531-
dc.identifier.orcidbrakORCID-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
I_Kiszkiel_Taudul_P_Stankiewicz_Microextraction_of_Tigecycline_Using_Deep_Eutectic_Solvents.pdfMicroextraction of tigecycline2,79 MBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons