REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/15014
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorLeśniewska, Barbara-
dc.contributor.authorGontarska, Marta-
dc.contributor.authorGodlewska-Żyłkiewicz, Beata-
dc.date.accessioned2023-05-26T10:32:41Z-
dc.date.available2023-05-26T10:32:41Z-
dc.date.issued2017-
dc.identifier.citationWater Air Soil Pollut, Volume 228 (2017), p. 1-14pl
dc.identifier.issn0049-6979-
dc.identifier.urihttp://hdl.handle.net/11320/15014-
dc.description.abstractA critical appraisal of single-step extraction procedures of chromium species from soil was done in terms of their selectivity towards Cr(III) and Cr(VI) species. Samples of natural mineral and organic soil and samples of soil enriched with different chromium compounds of various solubility (in liquid or solid form) were used to simulate contamination of soil by liquid and solid wastes. The efficiency of extraction of Cr(III) and Cr(VI) species with various reagents, e.g. acetic acid, chelating agents (EDTA, DTPA) or inorganic salts (phosphates and carbonates), was evaluated on the basis of recovery results obtained for enriched samples. None of used reagents allow for quantitative extraction of added Cr(III) form. Procedures based on extraction of soil with Na2CO3 at room and elevated temperature (90–95 °C) were suitable for extraction of Cr(VI) species from mineral soil, whereas for organic soil, the procedure based on extraction with Na2CO3 at room temperature was recommended. The developed extraction procedures were validated using certified reference material (CRM 041 soil) and applied for analysis of contaminated soil samples. The studies showed that the physical state of waste, initial form and oxidation state of chromium and soil properties influenced the final chromium species and their mobility in soil, which have an impact on contamination of environment. The analysis of contaminated soil samples from a tannery area showed that the share of Cr(VI) was very low (only 0.8–4.5%) despite the high total content of chromium, which confirmed that chromium was present in immobile forms.pl
dc.language.isoenpl
dc.publisherSpringerpl
dc.subjectChromium(VI)pl
dc.subjectMobility of Cr(III) and Cr(VI)pl
dc.subjectInterconversion of chromium speciespl
dc.subjectETAASpl
dc.subjectEnvironmental analysispl
dc.titleSelective Separation of Chromium Species from Soils by Single-Step Extraction Methods: a Critical Appraisalpl
dc.typeArticlepl
dc.rights.holder© The Author(s) 2017. This article is an open access publicationpl
dc.rights.holderThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were madepl
dc.identifier.doi10.1007/s11270-017-3459-5-
dc.description.AffiliationBarbara Leśniewska - Institute of Chemistry, University of Bialystok, Bialystok, Polandpl
dc.description.AffiliationMarta Gontarska - Institute of Chemistry, University of Bialystok, Bialystok, Polandpl
dc.description.AffiliationBeata Godlewska-Żyłkiewicz - Institute of Chemistry, University of Bialystok, Bialystok, Polandpl
dc.description.referencesApte, A. D., Verma, S., Tare, V., & Bose, P. (2005). Oxidation of Cr (III) in tannery sludge to Cr(VI): field observations and theoretical assessment. Journal of Hazardous Materials, B121, 215–222.pl
dc.description.referencesAvudainayagam, S., Megharaj, M., Owens, G., Kookana, R. S., Chittleborough, D., & Naidu, R. (2003). Chemistry of chromium in soils with emphasis on tannery waste sites. Reviews of Environmental Contamination and Toxicology, 178, 53–91.pl
dc.description.referencesBarceloux, D. G. (1999). Chromium. Journal of Toxicology. Clinical Toxicology, 37(2), 173–194.pl
dc.description.referencesBéni, Á., Karosi, R., & Posta, J. (2007). Speciation of hexavalent chromium in waters by liquid-liquid extraction and GFAAS determination. Microchemical Journal, 85, 103–108.pl
dc.description.referencesBrose, D. A., & James, B. R. (2010). Oxidation-reduction transformations of chromium in aerobic soils and the role of electron-shuttling quinones. Environmental Science & Technology, 44, 9438–9444.pl
dc.description.referencesCanadian Council of Ministers of the Environment, Canadian environmental quality guidelines, 2001.pl
dc.description.referencesChellan P., Sadler P.J. (2015). The elements of life and medicines. Philosophical Transactions of the Royal Society A 373, 20140182. doi:10.1098/rsta.2014.0182.pl
dc.description.referencesCheng, H., Zhou, T., Li, Q., Lu, L., & Lin, C. (2014). Anthropogenic chromium emissions in China from 1990 to 2009. PloS One, 9(2), e87753.pl
dc.description.referencesDecreto Ministeriale n.471, Gazetta Ufficiale Supplemento Ordinario N. 293, 1999.pl
dc.description.referencesDhal, B., Thatoi, H. N., Das, N. N., & Pandey, B. D. (2013). Chemical and microchemical remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. Journal of Hazardous Materials, 250–251, 272–291.pl
dc.description.referencesEckert, J. M., Stewart, J. J., Waite, T. D., Szymczak, R., & Williams, K. L. (1990). Reduction of chromium(VI) at subμg l−1 levels by fulvic acid. Analytica Chimica Acta, 236, 357–362.pl
dc.description.referencesEEATechnical report. (2015). European Union emission inventory report 1990–2013 under the UNECE Convention on Longrange Transboundary Air Pollution (LRTAP) (Vol. 8, p. 69). Luxembourg: Publications Office of the European Union http://www.eea.europa.eu/publications/lrtap-emissioninventory-report/#parent-fieldname-title; 8.12.2016.pl
dc.description.referencesElci, L., Divrikli, U., Akdogan, A., Hol, A., Cetin, A., & Soylak, M. (2010). Selective extraction of chromium(VI) using a leaching procedure with sodium carbonate from some plant leaves, soil and sediment samples. Journal of Hazardous Materials, 173, 778–782.pl
dc.description.referencesEvaluation of measurement data—guide to the expression of uncertainty in measurement. 2008. JCGM 100.pl
dc.description.referencesGitet, H., Subramanian, P. A., Minilu, D., Kiros, T., Hilawie, M., Gebremariam, G., & Taye, K. (2013). Speciation of chromium in soils near Sheba Leather Industry, Wukro Ethiopia. Talanta, 116, 626–629.pl
dc.description.referencesGrabarczyk, M. (2008). Protocol for extraction and determination of Cr(VI) in solid materials with a high Cr(III)/Cr(VI) ratio using EDDS as a leaching agent for Cr(VI) and a masking agent for Cr(III). Electroanalysis, 20, 1857–1862.pl
dc.description.referencesGrabarczyk, M., Korolczuk, M., & Tyszczuk, K. (2006). Extraction and determination of hexavalent chromium in soil samples. Analytical and Bioanalytical Chemistry, 386, 357–362.pl
dc.description.referencesHuo, D., & Kingston, H. M. (2000). Correction of species transformations in the analysis of Cr(VI) in solid environmental samples using speciated isotope dilution mass spectrometry. Analytical Chemistry, 72, 5047–5054.pl
dc.description.referencesHuo, D., Lu, Y., & Kingston, H. M. (1998). Determination and correction of analytical biases and study on chemical mechanisms in the analysis of Cr(VI) in soil samples using EPA protocols. Environmental Science & Technology, 32, 3418–3423.pl
dc.description.referencesJames, B. R. (2001). Remediation by reduction strategies for chromate contaminated soils. Environmental Geochemistry and Health, 23, 175–179.pl
dc.description.referencesJames, B. R., Petura, J. C., Vitale, R. J., & Mussoline, G. R. (1995). Hexavalent chromium extraction from soils: a comparison of five methods. Environmental Science & Technology, 29, 2377–2381.pl
dc.description.referencesJohnson, J., Schewel, L., & Graedel, T. E. (2006). The contemporary anthropogenic chromium cycle. Environmental Science & Technology, 40, 7060–7069.pl
dc.description.referencesKimbrough, D. E., Cohen, Y., Winer, A. M., Creelman, L., & Mahuni, C. (1999). A critical assessment of chromium in the environment. Critical Reviews in Environmental Science and Technology, 29, 1–46.pl
dc.description.referencesKorolczuk, M., & Grabarczyk, M. (2005). Evaluation of ammonia buffer containing EDTA as an extractant for Cr(VI) from solid samples. Talanta, 66, 1320–1325.pl
dc.description.referencesKotaś, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107, 263–283.pl
dc.description.referencesKrasnodębska-Ostręga, B., Paldyna, J., Kowalska, J., Jedynak, Ł., & Golimowski, J. (2009). Fractionation study in bioleached metallurgy wastes using six-step sequential extraction. Journal of Hazardous Materials, 167, 128–135.pl
dc.description.referencesLeśniewska, B., Krymska, M., Świerad, E., Wiater, J., & Godlewska-Żyłkiewicz, B. (2016). An ultrasound-assisted procedure for fast screening of mobile fractions of Cd, Pb and Ni in soil. Insight into method optimization and validation. Environmental Science and Pollution Research, 23, 25093–25104.pl
dc.description.referencesLillengen, B., & Wibetoe, G. (2002). Graphite furnace atomic absorption spectrometry used for determination of total EDTA and acetic acid extractable chromium and cobalt in soils. Analytical and Bioanalytical Chemistry, 372, 187–195.pl
dc.description.referencesMalherbe, J., Isaure, M. P., Seby, F., Watson, R. P., RodrigezGonzalez, P., Stutzman, P. E., Davis, C. W., Maurizio, C., Unceta, N., Sieber, J. R., Long, S. E., & Donard, O. F. X. (2011). Evaluation of hexavalent chromium extraction method EPA method 3060A for soils using XANES spectroscopy. Environmental Science & Technology, 45, 10492–10500.pl
dc.description.referencesMandiwana, K. L. (2008). Rapid leaching of Cr(VI) in soil with Na3PO4 in the determination of hexavalent chromium by electrothermal atomic absorption spectrometry. Talanta, 74, 736–740.pl
dc.description.referencesMetze, D., Jakubowski, N., & Klockow, D. (2005). Speciation of chromium in environment and food. In R. Cornelis, H. Crews, J. Caruso, & K. G. Heumann (Eds.), Handbook of elemental speciation II: species in the environment, food, medicine and occupational health (pp. 120–134). Chichester: Wiley.pl
dc.description.referencesMorales-Muñoz, S., Luque-Garcia, J. L., & Luque de Castro, M. D. (2004). A continuous approach for the determination of Cr(VI) in sediment and soil based on the coupling of microwave-assisted water extraction, preconcentration, derivatization and photometric detection. Analytica Chimica Acta, 515, 343–348.pl
dc.description.referencesOrdinance of the Minister of Environment of Poland concerning manner of conducting the assessment of contamination of the earth surface. Official Journal 2016, p.1395.pl
dc.description.referencesPaldyna, J., Krasnodębska-Ostręga, B., Kregielewska, K., Kowalska, J., Jedynak, Ł., Golimowski, J., Grobelski, T., Farbiszewska-Kiczma, J., & Farbiszewska, T. (2013). The assessment of environmental pollution caused by mining and metallurgy wastes from highly polluted post-industrial regions in Southern Poland. Environment and Earth Science, 68, 439–450.pl
dc.description.referencesPanichev, N., Mandiwana, K., & Foukaridis, G. (2003). Electrothermal atomic absorption spectrometric determination of Cr(VI) in soil after leaching of Cr(VI) species with carbon dioxide. Analytica Chimica Acta, 491, 81–89.pl
dc.description.referencesPantsar-Kallio, M., Reinikainen, S. P., & Oksanen, M. (2001). Interactions of soil components and their effects on speciation of chromium in soils. Analytica Chimica Acta, 439, 9–17.pl
dc.description.referencesPettine, M., & Capri, S. (2005a). Digestion treatments and risks of Cr(III)–Cr(VI) interconversions during Cr(VI) determination in soils and sediments—a review. Analytica Chimica Acta, 540, 231–238.pl
dc.description.referencesPettine, M., & Capri, S. (2005b). Removal of humic matter interference in the determination of Cr(VI) in soil extracts by the diphenylcarbazide method. Analytica Chimica Acta, 540, 239–246.pl
dc.description.referencesRüdel, H., & Terytze, K. (1999). Determination of extractable chromium(VI) in soils using a photometric method. Chemosphere, 39, 697–708.pl
dc.description.referencesSwedish Environmental Protection Agency, Guidelines for polluted soils. 2002 (chapter 2).pl
dc.description.referencesSzulczewski, M. D., Helmke, P. A., & Bleam, W. B. (1997). Comparison of XANES analyses and extractions to determine chromium speciation in contaminated soils. Environmental Science & Technology, 31, 2954–2959.pl
dc.description.referencesUnceta, N., Séby, F., Malherbe, J., & Donard, O. F. (2010). Chromium speciation in solid matrices and regulation: a review. Analytical and Bioanalytical Chemistry, 397, 1097–1111.pl
dc.description.referencesVincent, J. B. (2010). Chromium: celebrating 50 years as an essential element? Dalton Transactions, 39, 3787–3794.pl
dc.description.referencesVitale, R. J., Mussoline, G. R., Petura, J. C., & James, B. R. (1995). Hexavalent chromium quantification in soils: an effective and reliable procedure. American Environmental Laboratory, 7(1), 8–10.pl
dc.description.referencesVitale, R. J., Mussoline, G. R., Petura, J. C., & James, B. R. (1994). Hexavalent chromium extraction from soils: evaluation of an alkaline digestion method. Journal of Environmental Quality, 23, 1249–1256.pl
dc.description.referencesVitale, R. J., Mussoline, G. R., Rinehimer, K., Petura, J. C., & James, B. R. (1997). Extraction of sparingly soluble chromate from soils: evaluation of methods and Eh-pH effects. Environmental Science & Technology, 31, 390–394.pl
dc.identifier.eissn1573-2932-
dc.identifier.citation2Water Air Soil Pollutpl
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
B_Lesniewska_M_Gontarska_B_Godlewska_Zylkiewicz_Selective_Separation_of_Chromium_Species.pdf655,58 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja jest chroniona prawem autorskim (Copyright © Wszelkie prawa zastrzeżone)