REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/15013
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorLeśniewska, Barbara-
dc.contributor.authorKisielewska, Katarzyna-
dc.contributor.authorWiater, Józefa-
dc.contributor.authorGodlewska-Żyłkiewicz, Beata-
dc.date.accessioned2023-05-26T08:53:18Z-
dc.date.available2023-05-26T08:53:18Z-
dc.date.issued2016-
dc.identifier.citationEnvironmental Monitoring and Assessment, Volume 188, Issue 1 (2016), p. 1-13pl
dc.identifier.issn0167-6369-
dc.identifier.urihttp://hdl.handle.net/11320/15013-
dc.description.abstractA new fast method for determination of mobile zinc fractions in soil is proposed in this work. The three-stage modified BCR procedure used for fractionation of zinc in soil was accelerated by using ultrasounds. The working parameters of an ultrasound probe, a power and a time of sonication, were optimized in order to acquire the content of analyte in soil extracts obtained by ultrasound-assisted sequential extraction (USE) consistent with that obtained by conventional modified Community Bureau of Reference (BCR) procedure. The content of zinc in extracts was determined by flame atomic absorption spectrometry. The developed USE procedure allowed for shortening the total extraction time from 48 h to 27 min in comparison to conventional modified BCR procedure. The method was fully validated, and the uncertainty budget was evaluated. The trueness and reproducibility of the developed method was confirmed by analysis of certified reference material of lake sediment BCR-701. The applicability of the procedure for fast, low costs and reliable determination of mobile zinc fraction in soil, which may be useful for assessing of anthropogenic impacts on natural resources and environmental monitoring purposes, was proved by analysis of different types of soil collected from Podlaskie Province (Poland).pl
dc.language.isoenpl
dc.publisherSpringerpl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSequential extractionpl
dc.subjectModified BCR procedurepl
dc.subjectZinc fractionspl
dc.subjectUltrasound probepl
dc.subjectUncertainty budgedpl
dc.titleFast and simple procedure for fractionation of zinc in soil using an ultrasound probe and FAAS detection. Validation of the analytical method and evaluation of the uncertainty budgetpl
dc.typeArticlepl
dc.rights.holder©The Author(s) 2015. This article is published with open access at Springerlink.compl
dc.rights.holderThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.pl
dc.identifier.doi10.1007/s10661-015-5020-6-
dc.description.EmailBarbara Leśniewska: blesniew@uwb.edu.plpl
dc.description.AffiliationBarbara Leśniewska - University of Bialystok, Institute of Chemistry, Bialystok, Polandpl
dc.description.AffiliationKatarzyna Kisielewska - University of Bialystok, Institute of Chemistry, Bialystok, Polandpl
dc.description.AffiliationJózefa Wiater - Bialystok University of Technology, Faculty of Civil and Environmental Engineering, Bialystok, Polandpl
dc.description.AffiliationBeata Godlewska-Żyłkiewicz - University of Bialystok, Institute of Chemistry, Bialystok, Polandpl
dc.description.referencesAlonso Castillo, M. L., Vereda, A. E., Siles Cordero, M. T., Cano Pavon, J. M., & Garcia de Torres, A. (2011). Fractionation of heavy metals in sediment by using microwave assisted sequential extraction procedure and determination by inductively coupled plasma mass spectrometry. Microchem. J., 98, 234–239.pl
dc.description.referencesArain, M. B., Kazi, T. G., Jamali, M. K., Jalbani, N., Afridi, H. I., & Baig, J. A. (2008). Speciation of heavy metals in sediment by conventional, ultrasound and microwave assisted single extraction methods: a comparison with modified sequential extraction procedure. J. Hazard. Mater., 154, 998–1006.pl
dc.description.referencesBakircioglu, D., Bakircioglu Kurtulus, Y., & Ibar, H. (2011). Investigation of trace elements in agricultural soils by BCR sequential extraction method and its transfer to wheat plants. Environm. Monit. Assessm., 175, 304–313.pl
dc.description.referencesBendicho, C., De La Calle, I., Pena, F., Costas, M., Cabaleiro, N., & Lavilla, I. (2012). Ultrasound-assisted pre-treatment of solid samples in the context of green analytical chemistry. Trends Anal. Chem., 31, 50–60.pl
dc.description.referencesBielecka-Giełdoń, A., Ryłko, E., & Żamojć, K. (2013). Distribution, bioavailability and fractionation of metallic elements in allotment garden soils using the BCR sequential extraction procedure. Pol. J. Environ. Stud., 22, 1013–1021.pl
dc.description.referencesCanepari, S., Cardarelli, E., Silvano, G., & Scimonelli, L. (2005). Ultrasound and microwave-assisted extraction of metals from sediment: a comparison with the BCR procedure. Talanta, 66, 1122–1130.pl
dc.description.referencesCatalado, D. A., & Wildung, R. E. (1978). Soil and plant factors influencing the accumulation of heavy metals by plants. Environmental Health Perspectives, 27, 149–159.pl
dc.description.referencesCouncil Directive 86/278/EEC (1986). On the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. EC Official J., L181, 6–12.pl
dc.description.referencesDavidson, C. M., & Delevoye, G. (2001). Effect of ultrasonic agitation on the release of copper, iron, manganese and zinc from soil and sediment using the BCR three stage sequential extraction. J. Environ. Monit., 3, 398–403.pl
dc.description.referencesEvaluation of measurement data-Guide to the expression of uncertainty in measurement. (2008) JCGM 100.pl
dc.description.referencesFinžgar, N., Tlustošs, P., & Leštan, D. (2007). Relationship of soil properties to fractionation, bioavailability and mobility of lead and zinc in soil. Plant Soil Environ., 53, 225–238.pl
dc.description.referencesGarcia, C. D., García-Salgado, S., & Ángeles, Q. M. (2014). Accuracy evaluation of ultrasound probe sonication and microwave-assisted extraction systems for rapid single extraction of metals in soils. Anal. Methods., 6, 8403–8412.pl
dc.description.referencesGolia, E. E., Tsiropoulos, N. G., Dimirkou, A., & Mitsios, I. (2007). Distribution of heavy metals of agricultural soils of central Greece using the modified BCR sequential extraction method. Int. J. Environ. Anal. Chem., 87, 1053–1063.pl
dc.description.referencesKabata-Pendias A. (2011). Trace elements in soils and plants, CRC Press Taylor and Francis Group, LLC, Boca Raton, 4th editionpl
dc.description.referencesKazi, T. G., Jamali, M. K., Siddiqui, A., Kazi, G. H., Arain, M. B., & Afridi, H. I. (2006). An ultrasonic assisted extraction method to release heavy metals from untreated sewage sludge samples. Chemosphere, 63, 411–420.pl
dc.description.referencesKrasnodębska-Ostręga, B., Kaczorowska, M., & Golimowski, J. (2006). Ultrasound-assisted extraction for the evaluation of element mobility in bottom sediment collected at mining and smelting Pb–Zn ores area in Poland. Microchim Acta, 154, 39–43.pl
dc.description.referencesKrasnodębska-Ostręga, B., & Kowalska, J. (2003). Ultrasoundassisted acetic acid extraction of metals from soils. Chem.Anal. (Warsaw), 48, 967–974.pl
dc.description.referencesLeśniewska, B., Świerad, E., Łukowski, A., Wiater, J., & Godlewska-Żyłkiewicz, B. (2014). Ultrasound assisted extraction for determination of mobile fractions of copper in soil. Annals of the National Institute of Hygiene, 65, 67–74.pl
dc.description.referencesMoćko, A., & Wacławek, W. (2004). Three-step extraction procedure for determination of heavy metals availability to vegetables. Anal. Bioanal. Chem., 380, 813–817.pl
dc.description.referencesMossop, K. F., & Davidson, C. M. (2003). Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Anal. Chim. Acta, 478, 111–118.pl
dc.description.referencesOrdinance of the Minister of Environment of Poland. (2002). Concerning soil quality standards and earth quality standards. Official Journal, 165(1359), 10561–10564.pl
dc.description.referencesPakuła, K. (2011). Fractions of lead, chromium, zinc, copper and nickel in humic horizon of soils situated along the Siedlce ring road. Inżynieria Ekologiczna, 27, 153–160 (in Polish).pl
dc.description.referencesPéreza, G., Valiente, M., & Bendicho, C. (2008). A comparative study of metal readsorption in the application of a three-stage sequential extraction scheme and two accelerated versions (ultrasonic and single extractions). Open Anal. Chem. J., 2, 40–46.pl
dc.description.referencesPérez-Cid, B., Lavilla, I., & Bendicho, C. (1998). Speeding up of a three-stage sequential extraction method for metal speciation using focused ultrasound. Anal. Chim. Acta, 360, 35–41.pl
dc.description.referencesPérez-Cid, B., Lavilla, I., & Bendicho, C. (1999). Comparison between conventional and ultrasound accelerated Tessier sequential extraction schemes for metal fractionation in sewage sludge. Fresenius J. Anal. Chem., 363, 667–672.pl
dc.description.referencesPrasad, M. N. V., & Freitas, H. (2003). Metal hyperaccumulation in plants-biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6, 275–321.pl
dc.description.referencesRauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Barahona, E., Lachica, M., Ure, A. M., Davidson, C. M., Gomez, A., Luck, D., Bacon, J., Yli-Halla, M., Muntau, H., & Quevauviller, P. (2000). Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. J. Environ. Monit., 2, 228–233.pl
dc.description.referencesRelić, D., Dorđević, D., Sakan, S., Anđelković, I., Pantelić, A., Stanković, R., Radojičić, A., & Popović, A. (2013). An appraisal of conventional, microwave and ultrasound BCR extraction methods for the analysis of metals in sediments of Pančevo. Serbia. Environm. Monit. Assessm., 1, 2–4.pl
dc.description.referencesRoss, S. M. (1994). Toxic metals in soil-plant systems (p. 469). Chichester: Wiley.pl
dc.description.referencesRóżański, Sz. (2013). Fractionation of selected heavy metals in agricultural soils. Ecol. Chem. Eng. S., 20(1), 117–125.pl
dc.description.referencesRusnak, R., Halasz, G., Horvath, M., & Remeteiova, D. (2010). Preliminary results on the intensification of the BCR sequential extraction with sonication for sediments, soils, and gravitation sediment samples. Toxicol. Environ. Chem., 92, 443–452.pl
dc.description.referencesSahuquillo, A., Lopez-Sanchez, J. F., Rubio, R., Rauret, G.,Thomas, R. P., Davidson, C. M., & Ure, A. M. (1999). Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Anal. Chim. Acta, 382, 317–327.pl
dc.description.referencesSutherland, R. A. (2010). BCR-701: a review of 10-years of sequential extraction analyses. Anal. Chim. Acta, 680, 10–20.pl
dc.description.referencesRóżański, Sz. (2013). Fractionation of selected heavy metals in agricultural soils. Ecol. Chem. Eng. S., 20(1), 117–125.pl
dc.description.referencesTessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem., 51, 844–851.pl
dc.description.referencesUre, A. M., Quevauviller, P., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem., 51, 135–151.pl
dc.description.referencesWiater, J., Łukowski, A., & Godlewska-Żyłkiewicz, B. (2014). Content of zinc in plants depending on its fractional composition in soil and properties of soil. Ecol. Chem. Eng. A, 21, 347–353.pl
dc.description.referencesZemberyova, M., Bartekova, J., & Hagarova, I. (2006). The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins. Talanta, 70, 976–977.pl
dc.identifier.eissn1573-2959-
dc.description.volume188pl
dc.description.issue1pl
dc.identifier.citation2Environmental Monitoring and Assessmentpl
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons