REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/15012
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorLeśniewska, Barbara-
dc.contributor.authorGodlewska-Żyłkiewicz, Beata-
dc.date.accessioned2023-05-26T06:49:47Z-
dc.date.available2023-05-26T06:49:47Z-
dc.date.issued2019-
dc.identifier.citationMolecules, Volume 24 (2019), pp. 1-16pl
dc.identifier.issn1420-3049-
dc.identifier.urihttp://hdl.handle.net/11320/15012-
dc.description.abstractThe aim of this work was to study by a hyphenated HPLC-ICP MS technique the chromium species released during alkaline extraction of various soils collected from a contaminated area of an old tannery. An ultrasound-assisted extraction procedure using 0.1 mol L−1 Na2CO3 solution was developed for the release of chromium species from the soil. The chromium species in the soil extracts were separated on a C8 column using EDTA and TBAH solution as a mobile phase. The use of an ICP-QQQ MS spectrometer in tandem mass configuration (MS/MS) combined with an octopole reaction system (ORS3 ) pressurized with helium allows one to eliminate spectral interferences during Cr determination in the soil extracts. The detection limit of the procedure was 0.08 µg L−1 for Cr(III) and 0.09 µg L−1 for Cr(VI) species. The trueness of the IP RP HPLC-ICP MS method was proved by an analysis of CRM 041 and CRM 060. The advantage of the proposed method is the analysis of soil extracts without their preliminary neutralization, which limits the losses of Cr(VI) due to the reduction process. The analysed soils mainly contained chromium in immobile forms (94.6–98.5% of the total Cr content). In all alkaline soil extracts mostly the Cr(VI) form was found, but in the extract of organic soils Cr(III) was also present. This arose from the reduction of Cr(VI) species by organic matter (humic acids) and Fe(II). The amount of formed Cr(III) species was dependent on the type of soil (content of organic matter, Mn and Fe) and its moistness. For the first time, the presence of neutral and non-polar chromium fractions in the soil extracts was also demonstrated. It was found that reliable speciation analysis results could be obtained for mineral soils.pl
dc.description.sponsorshipThe work was financed from the funds of the Ministry of Science and Higher Education in the framework of subsidies for the maintenance of research potential granted to the Faculty of Biology and Chemistry of the University of Bialystok. The ICP-MS instrument was funded by EU, as a part of the Operational Programme Development of Eastern Poland 2007–2013, project POPW.01.03.00-20-034/09-00.pl
dc.language.isoenpl
dc.publisherMDPIpl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectultrasound-assisted extractionpl
dc.subjection pair reversed phase HPLC coupled with inductively coupled plasma mass spectrometrypl
dc.subjectionic chromium speciespl
dc.subjectneutral and non-polar chromium fractionspl
dc.subjectalkaline soil extractpl
dc.titleSpeciation of Chromium in Alkaline Soil Extracts by an Ion-Pair Reversed Phase HPLC-ICP MS Methodpl
dc.typeArticlepl
dc.rights.holder© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) licensepl
dc.identifier.doi10.3390/molecules24061172-
dc.description.AffiliationBarbara Leśniewska - Institute of Chemistry, University of Bialystokpl
dc.description.AffiliationBeata Godlewska-Żyłkiewicz - Institute of Chemistry, University of Bialystokpl
dc.description.referencesDhal, B.; Thatoi, H.N.; Das, N.N.; Pandey, B.D. Chemical and microchemical remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mat. 2013, 250–251, 272–291.pl
dc.description.referencesKotaś, J.; Stasicka, Z. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 2000, 107, 263–283.pl
dc.description.referencesŠčančar, J.; Milacic, R. A critical overview of Cr speciation analysis based on high performance liquid chromatography and spectrometric techniques. J. Anal. Atom. Spectrom. 2014, 29, 427–443.pl
dc.description.referencesKaraś, K.; Frankowski, M. Analysis of hazardous elements in children toys: Multi-elemental determination by chromatography and spectrometry methods. Molecules 2018, 23, 3017.pl
dc.description.referencesHoet, P. Speciation of chromium in occupational exposure and clinical aspects. In Handbook of Elemental Speciation II: Species in the Environment, Food, Medicine & Occupational Health; Cornelis, R., Crews, H., Caruso, J., Heumann, K.G., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2005; pp. 135–157.pl
dc.description.referencesIARC. Evaluation of Carcinogenic Risk to Humans: Chromium and Chromium Compounds: Biological Data Relevant to the Evaluation of Carcinogenic Risk to Humans; IARC Monographs; International Agency for Research on Cancer: Lyon, France, 1990; Volume 49, pp. 49–214.pl
dc.description.referencesBartlett, R.J. Chromium cycling in soils and water: Links, gaps, and methods. Environ. Health Perspect. 1991, 92, 17–24.pl
dc.description.referencesMetze, D.; Jakubowski, N.; Klockow, D. Speciation of chromium in environment and food. In Handbook of Elemental Speciation II: Species in the Environment, Food, Medicine & Occupational Health; Cornelis, R., Crews, H., Caruso, J., Heumann, K.G., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2005; pp. 120–134.pl
dc.description.referencesLeśniewska, B.; Krymska, M.; Swierad, E.; Wiater, J.; Godlewska- Żyłkiewicz, B. An ultrasound-assisted procedure for fast screening of mobile fractions of Cd, Pb and Ni in soil. Insight into method optimization and validation. Environ. Sci. Pollut. Res. 2016, 23, 25093–25104.pl
dc.description.referencesLeśniewska, B.; Kisielewska, K.; Wiater, J.; Godlewska-Żyłkiewicz, B. Fast and simple procedure for fractionation of zinc in soil using an ultrasound probe and FAAS detection. Validation of the analytical method and evaluation of the uncertainty budget. Environ. Monit. Assess. 2016, 188, 29.pl
dc.description.referencesOrecchio, S.; Amorello, D.; Barreca, S.; Pettignano, A. Speciation of vanadium in urban, industrial and volcanic soils by a modified Tessier method. Environ. Sci. Process. Impacts 2016, 18, 323–329.pl
dc.description.referencesLillengen, B.; Wibetoe, G. Graphite furnace atomic absorption spectrometry used for determination of total EDTA and acetic acid extractable chromium and cobalt in soils. Anal. Bioanal. Chem. 2002, 372, 187–195.pl
dc.description.referencesRüdel, H.; Terytze, K. Determination of extractable chromium(VI) in soils using a photometric method. Chemosphere 1999, 39, 697–708.pl
dc.description.referencesSeby, F.; Vacchina, V. Critical assessment of hexavalent chromium species from different solid environmental, industrial and food matrices. Trends Anal. Chem. 2018, 104, 54–68.pl
dc.description.referencesŠčančar, J.; Zupančič, M.; Milačič, R. Development of analytical procedure for the determination of exchangeable Cr(VI) in soils by anion-exchange fast protein liquid chromatography with electrothermal atomic absorption spectrometry detection. Water Air Soil Pollut. 2007, 185, 121–129.pl
dc.description.referencesZuliani, T.; Ščančar, J.; Milačič, R. The use of stable isotopes for Cr(VI) determination in silty-clay soil solution. Anal. Bioanal. Chem. 2013, 405, 7231–7240.pl
dc.description.referencesPanichev, N.; Mandiwana, K.; Foukaridis, G. Electrothermal atomic absorption spectrometric determination of Cr(VI) in soil after leaching of Cr(VI) species with carbon dioxide. Anal. Chim. Acta 2003, 491, 81–89.pl
dc.description.referencesJames, B.R.; Petura, J.C.; Vitale, R.J.; Mussoline, G.R. Hexavalent chromium extraction from soils: A comparison of five methods. Environ. Sci. Technol. 1995, 29, 2377–2381.pl
dc.description.referencesHuo, D.; Lu, Y.; Kingston, H.M. Determination and correction of analytical biases and study on chemical mechanisms in the analysis of Cr(VI) in soil samples using EPA protocols. Environ. Sci. Technol. 1998, 32, 3418–3423.pl
dc.description.referencesMalherbe, J.; Isaure, M.P.; Seby, F.; Watson, R.P.; Rodrigez-Gonzalez, P.; Stutzman, P.E.; Davis, C.W.; Maurizio, C.; Unceta, N.; Sieber, J.R.; et al. Evaluation of hexavalent chromium extraction method EPA method 3060A for soils using XANES spectroscopy. Environ. Sci. Technol. 2011, 45, 10492–10500.pl
dc.description.referencesTirez, K.; Scharf, H.; Calzolari, D.; Cleven, R.; Kisser, M.; Luck, D. Validation of a European standard for the determination of hexavalent chromium in solid material. J. Environ. Monit. 2007, 9, 749–759.pl
dc.description.referencesWolle, M.M.; Rahman, G.M.M.; Kingston, H.M.S.; Pamuku, M. Optimization and validation of strategies for quantifying chromium species in soil based on speciated isotope dilution mass spectrometry with mass balance. J. Anal. Atom. Spectrom. 2014, 29, 1640–1647.pl
dc.description.referencesKorolczuk, M.; Grabarczyk, M. Evaluation of ammonia buffer containing EDTA as an extractant for Cr(VI) from solid samples. Talanta 2005, 66, 1320–1325.pl
dc.description.referencesGrabarczyk, M.; Korolczuk, M.; Tyszczuk, K. Extraction and determination of hexavalent chromium in soil samples. Anal. Bioanal. Chem. 2006, 386, 357–362.pl
dc.description.referencesLeśniewska, B.; Gontarska, M.; Godlewska-Zyłkiewicz, B. Selective separation of chromium species from soils by single-step extraction methods: A critical appraisal. Water Air Soil Pollut. 2017, 228, 274.pl
dc.description.referencesHuo, D.; Kingston, H.M. Correction of species transformations in the analysis of Cr(VI) in solid environmental samples using speciated isotope dilution mass spectrometry. Anal. Chem. 2000, 72, 5047–5054.pl
dc.description.referencesKuo, C.-Y.; Jiang, S.-J.; Sahayam, A.C. Speciation of chromium and vanadium in environmental samples using HPLC-DRC-ICP-MS. J. Anal. Atom. Spectrom. 2007, 22, 636–641.pl
dc.description.referencesWolf, R.E.; Morrison, J.M.; Goldhaber, M.B. Simultaneous determination of Cr(III) and Cr(VI) using reversed-phased ion-pairing liquid chromatography with dynamic reaction cell inductively coupled plasma mass spectrometry. J. Anal. Atom. Spectrom. 2007, 22, 1051–1060.pl
dc.description.referencesWolf, R.E.; Morman, S.A.; Hageman, P.L.; Hoefen, T.M.; Plumlee, G.S. Simultaneous speciation of arsenic, selenium, and chromium: Species stability, sample preservation, and analysis of ash and soil leachates. Anal. Bioanal. Chem. 2011, 401, 2733–2745.pl
dc.description.referencesBendicho, C.; De La Calle, I.; Pena, F.; Costas, M.; Cabaleiro, N.; Lavilla, I. Ultrasound-assisted pre-treatment of solid samples in the context of green analytical chemistry. Trends Anal. Chem. 2012, 31, 50–60.pl
dc.description.referencesKrasnodębska-Ostręga, B.; Kaczorowska, M.; Golimowski, J. Ultrasound-assisted extraction for the evaluation of element mobility in bottom sediment collected at mining and smelting Pb-Zn ores area in Poland. Microchim. Acta 2006, 154, 39–43.pl
dc.description.referencesKazi, T.G.; Jamali, M.K.; Siddiqui, A.; Kazi, G.H.; Arain, M.B.; Afridi, H.I. An ultrasonic assisted extraction method to release heavy metals from untreated sewage sludge samples. Chemosphere 2006, 63, 411–420.pl
dc.description.referencesD’Ilio, S.; Violante, N.; Majorani, C.; Petrucci, F. Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices: Still a challenge? A review. Anal. Chim. Acta 2011, 698, 6–13.pl
dc.description.referencesVitale, R.J.; Mussoline, G.R.; Petura, J.C.; James, B.R. Hexavalent chromium extraction from soils: Evaluation of an alkaline digestion method. J. Environ. Qual. 1994, 23, 1249–1256.pl
dc.description.referencesJames, B.R. The challenge of remediating chromium-contaminated soil. The complex chemistry of chromium compounds presents unique measurement and regulatory challenges. Environ. Sci. Technol. 1996, 30, 248–251.pl
dc.description.referencesPettine, M.; Millero, F.J.; La Noce, T. Chromium(III) interaction in seawater through its oxidation kinetics. Mar. Chem. 1991, 34, 29–46.pl
dc.description.referencesGuidotti, L.; Queipo Abad, S.; Rodríguez-González, P.; García Alonso, J.I.; Beone, G.M. Quantification of Cr(VI) in soil samples from a contaminated area in northern Italy by isotope dilution mass spectrometry. Environ. Sci. Pollut. Res. 2015, 22, 17569–17576.pl
dc.description.volume24pl
dc.identifier.citation2Moleculespl
dc.identifier.orcid0000-0002-7127-5701-
dc.identifier.orcid0000-0002-2576-4029-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
B_Lesniewska_B_Godlewska_Zylkiewicz_Speciation_of_Chromium_in_Alkaline_Soil_Extracts.pdf1,25 MBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons