REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/15008
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorGodlewska-Żyłkiewicz, Beata-
dc.contributor.authorSawicka, Sylwia-
dc.contributor.authorKarpińska, Joanna-
dc.date.accessioned2023-05-24T11:58:56Z-
dc.date.available2023-05-24T11:58:56Z-
dc.date.issued2019-
dc.identifier.citationWater, Vol. 11 Issue 7 (2019), pp. 1-17pl
dc.identifier.urihttp://hdl.handle.net/11320/15008-
dc.description.abstractThe emission of platinum group metals from different sources has caused elevated concentrations of platinum and palladium in samples of airborne particulate matter, soil, surface waters and sewage sludge. The ability of biomass of Aspergillus sp. and yeast Saccharomyces sp. for removal of Pt(IV) and Pd(II) from environmental samples was studied in this work. The pH of the solution, the mass of biosorbent, and contact time were optimized. The Langmuir and Freundlich adsorption isotherms and kinetic results were used for interpretation of the process equilibrium of Pt(IV) and Pd(II) on both microorganisms. The maximal efficiency of retention of Pt(IV) on yeast and fungi was obtained at acidic solutions (pH 2.0 for Pt(IV) and pH 2.5–3.5 for Pd(II)). The equilibrium of the biosorption process was attained within 45 min. The best interpretation for the experimental data was given by the Langmuir isotherm. Kinetics of the Pt and Pd adsorption process suit well the pseudo-second-order kinetics model. Fungi Aspergillus sp. shows higher adsorption capacity for both metals than yeast Saccharomyces sp. The maximum adsorption capacity of fungi was 5.49 mg g−1 for Pt(IV) and 4.28 mg g−1 for Pd(II). The fungi possess the ability for efficient removal of studied ions from different wastewater samples (sewage and road run-off water). It was also demonstrated, that quantitative recovery of Pd from industrial wastes could be obtained by biosorption using Aspergillus sp.pl
dc.language.isoenpl
dc.publisherMDPIpl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectbiosorptionpl
dc.subjectprecious metalspl
dc.subjectselective sorbentpl
dc.subjectisotherm adsorption modelspl
dc.subjectenvironmental samplespl
dc.subjectrun-off waterpl
dc.titleRemoval of Platinum and Palladium from Wastewater by Means of Biosorption on Fungi Aspergillus sp. and Yeast Saccharomyces sp.pl
dc.typeArticlepl
dc.rights.holder© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) licensepl
dc.identifier.doi10.3390/w11071522-
dc.description.Emailbgodlew@uwb.edu.plpl
dc.description.AffiliationBeata Godlewska-Żyłkiewicz - Institute of Chemistry, University of Bialystokpl
dc.description.AffiliationSylwia Sawicka - Institute of Chemistry, University of Bialystokpl
dc.description.AffiliationJoanna Karpińska - Institute of Chemistry, University of Bialystokpl
dc.description.referencesBossi, T. Environmental Profile of Platinum Group Metals Interpretation of the results of a cradle-to-gate life cycle assessment of the production of pgms and the benefits of their use in a selected application. Johns. Matthey Technol. Rev. 2017, 61, 111–121.pl
dc.description.referencesCui, J.; Zhang, L. Metallurgical recovery of metals from electronic waste: A review. J. Hazard. Mater. 2008, 158, 228–256.pl
dc.description.referencesMatthey, J. Precious Metal Division, Johnson Matthey Publishing Company. Available online: http://www.platinum.matthey.com/documents/new-item/pgm%20market%20reports/pgm-market-report-may-2016.pdf (accessed on 10 May 2019).pl
dc.description.referencesZereini, F.; Alt, F. Anthropogenic Platinum Group Element Emission; Springer: Berlin, Germany, 2000.pl
dc.description.referencesZereini, F.; Alt, F. Palladium Emissions in the Environment, Analytical Methods, Enviromental Assessment and Health Effects; Springer: Berlin, Germany, 2006.pl
dc.description.referencesKalavrouziotis, I.K.; Koukoulakis, P.H. The environmental impact of the platinum group elements (Pt, Pd, Rh) emitted by the automobile catalyst converters. Water Air Soil Pollut. 2009, 196, 393–402.pl
dc.description.referencesJackson, M.T.; Richard, H.M.; Samson, J. Platinum-group elements in sewage sludge and incinerator ash in the United Kingdom: Assessment of PGE sources and mobility in cities. Sci. Total Environ. 2010, 408, 1276–1285.pl
dc.description.referencesRauch, S.; Morrison, G.M.; Motelica-Heino, M.; Donard, O.F.X.; Muris, M. Elemental association and fingerprints of traffic-related metals in road sediments. Environ. Sci. Technol. 2000, 33, 3119–3123.pl
dc.description.referencesNuss, P.; Blengini, G.A. Towards better monitoring of technology critical elements in Europe: Coupling of natural and anthropogenic cycles. Sci. Total Environ. 2018, 613, 569–578.pl
dc.description.referencesAlhuwalia, S.S.; Goyal, D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 2007, 98, 2243–2257.pl
dc.description.referencesPark, D.; Yun, Y.S.; Park, J.M. The past, present and future trends of biosorption. Biotechnol. Bioprocess Eng. 2010, 15, 86–102.pl
dc.description.referencesDas, N. Recovery of precious metals through biosorption–A review. Hydrometallurgy 2010, 103, 180–189.pl
dc.description.referencesLim, J.S.; Kim, S.M.; Lee, S.Y.; Stach, E.A.; Culver, J.N.; Harris, M.T. Quantitative study of Au(III) and Pd(II) ion biosorption on genetically engineered Tobacco mosaic virus. J. Colloid Interface Sci. 2010, 342, 455–461.pl
dc.description.referencesPark, J.; Won, S.W.; Mao, J.; Kwak, I.S.; Yun, Y.S. Recovery of Pd(II) from hydrochloric solution using polyallylamine hydrochloride-modified Escherichia coli biomass. J. Hazard. Mater. 2010, 181, 794–800.pl
dc.description.referencesEscudero, L.B.; Maniero, M.A.; Agostini, E.; Smichowski, P.N. Biological substrates: Green alternatives in trace elemental preconcentration and speciation analysis. Trends Anal. Chem. 2016, 80, 531–546.pl
dc.description.referencesChassary, P.; Vincent, T.; Marcano, J.S.; Macaskie, L.E.; Guibal, E. Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy 2005, 76, 131–147.pl
dc.description.referencesRamesh, A.; Hasegawa, H.; Sugimoto, W.; Maki, T.; Ueda, K. Adsorption of gold(III), platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresour. Technol. 2008, 99, 3801–3809.pl
dc.description.referencesZhou, L.; Xu, J.; Liang, X.; Liu, Z. Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. J. Hazard. Mater. 2010, 182, 518–524.pl
dc.description.referencesKim, Y.H.; Nakano, Y. Adsorption mechanism of palladium by redox within condensed-tannin gel. Water Res.2005, 39, 1324–1330.pl
dc.description.referencesWang, R.; Liao, X.; Shi, B. Adsorption behaviors of Pt(II) and Pd(II) on collagen fibre immobilized bayberry tannin. Ind. Eng. Chem. Res. 2005, 44, 4221–4226.pl
dc.description.referencesSari, A.; Durali, M.; Tuzen, M.; Soylak, M. Biosorption of palladium(II) from aqueous solution by moss (Racomitrium lanuginosum) biomass: Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 2009, 162, 874–879.pl
dc.description.referencesParajuli, D.; Hirota, K. Recovery of palladium using chemically modified cedar wood powder. J. Colloid Interface Sci. 2009, 338, 371–375.pl
dc.description.referencesWon, S.W.; Mao, J.; Kwak, I.S.; Sathishkumar, M.; Yun, Y. Platinum recovery from ICP wastewater by a combined method of biosorption and incineration. Bioresour. Technol. 2010, 101, 1135–1140.pl
dc.description.referencesWon, S.W.; Lim, A.; Yun, Y.S. Recovery of high purity metallic Pd from Pd(II)-sorbed biosorbents by incineration. Bioresour. Technol. 2013, 137, 400–403.pl
dc.description.referencesde Vargas, I.; Macaskie, L.E.; Guibal, E. Biosorption of palladium and platinum by sulfate-reducing bacteria. J. Chem. Technol. Biotechnol. 2004, 79, 49–56.pl
dc.description.referencesKim, S.; Song, M.H.; Wei, W.; Yun, Y.S. Selective biosorption behavior of Escherichia coli biomass toward Pd(II) in Pt(IV)-Pd(II) binary solution. J. Hazard. Mater. 2015, 283, 657–662.pl
dc.description.referencesXu, H.; Tan, L.; Dong, H.; He, J.; Liu, X.; Qiu, G.; He, Q.; Xie, J. Competitive biosorption behavior of Pt(IV) and Pd(II) by Providencia vermicola. RSC Adv. 2017, 7, 32229–32235.pl
dc.description.referencesTurner, A.; Lewis, M.S.; Shams, L.; Brown, M.T. Uptake of platinum group elements by marine macroalga. Mar. Chem. 2007, 105, 271–280.pl
dc.description.referencesDziwulska, U.; Bajguz, A.; Godlewska-Zyłkiewicz, B. The use of algae ˙ Chlorella vulgaris immobilized on Cellex-T support for separation/preconcentration of trace amounts of platinum and palladium before GFAAS determination. Anal. Lett. 2004, 37, 2189–2203.pl
dc.description.referencesJu, X.; Igarashi, K.; Miyashita, S.I.; Mitsuhashi, H.; Inagaki, K.; Fujii, S.I.; Sawada, H.; Kuwabara, T.; Minoda, A. Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga. Galdieria sulphuraria. Bioresour. Technol. 2016, 211, 759–764.pl
dc.description.referencesBlackwell, K.J.; Singleton, I.; Tobin, J.M. Metal cation uptake by yeast: A review. Appl. Microbiol. Biotechnol. 1995, 43, 579–584.pl
dc.description.referencesMack, C.L.; Wilhelmi, B.; Duncan, J.R.; Burgess, J.E. A kinetic study of the recovery of platinum ions from an artificial solution by immobilized Saccharomyces cerevisiae biomass. Miner. Eng. 2008, 21, 31–37.pl
dc.description.referencesGodlewska-Zyłkiewicz, B. Biosorption of platinum and palladium for their separation / pre-concentration prior to graphite furnace atomic absorption spectrometric determination. Spectrochim. Acta Part B 2003, 58, 1531–1540.pl
dc.description.referencesGodlewska-Zyłkiewicz, B.; Kozłowska, M. Solid phase extraction using immobilized yeast ˙ Saccharomyces cerevisiae for determination of palladium in road dust. Anal. Chim. Acta 2005, 539, 61–67.pl
dc.description.referencesMalejko, J.; Szygałowicz, M.; Godlewska-Zyłkiewicz, B.; Kojło, A. Sorption of platinum on immobilized microorganisms for its on-line preconcentration and chemiluminescent determination in water samples. Microchim Acta 2012, 176, 429–435.pl
dc.description.referencesMagnuson, J.; Lasure, L. Organic acid production by filamentous fungi. In Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine; Tkacz, J., Lange, L., Eds.; Kluwer Academic & Plenum Publishers: New York, NY, USA, 2004; pp. 307–340.pl
dc.description.referencesKapoor, A.; Viraraghavan, T. Heavy metal biosorption sites in Aspergillus niger. Bioresour. Technol. 1997, 61, 221–227.pl
dc.description.referencesAkar, T.; Tunali, S. Biosorption characteristics of Aspergillus flavus biomass for removal of Pb (II) and Cu(II) ions from and aqueous solution. Bioresour. Technol. 2006, 97, 1780–1787.pl
dc.description.referencesBaytak, S.; Kocyigit, A.; Turker, A.R. Determination of lead, iron and nickel in water and vegetable samples after preconcentration with Aspergillus niger loaded on silica gel. Clean 2007, 35, 607–611.pl
dc.description.referencesMoore, B.A.; Duncan, J.R.; Burgess, J.E. Fungal bioaccumulation of copper, nickel, gold and platinum. Miner. Eng. 2008, 21, 55–60.pl
dc.description.referencesWoińska, S.; Godlewska-Zyłkiewicz, B. Determination of platinum and palladium in road dust after their separation on immobilized fungus by electrothemal atomic absorption spectrometry. Spectrochim. Acta Part B 2011, 66, 522–528.pl
dc.description.referencesSadowski, Z.; Maliszewska, I.H.; Grochowalska, B.; Polowczyk, I.; Koźlecki, T. Synthesis of silver nanoparticles using microorganisms. Mater. Sci. Pol. 2008, 26, 419–424.pl
dc.description.referencesVolesky, B. Sorption and Biosorption; Bv Sorbex: Montreal, QC, Canada, 2003; pp. 103–116.pl
dc.description.referencesFreundlich, H. Ueber die Adsorption in Loesungen. Z. Physik. Chem. 1907, 57, 385–470.pl
dc.description.referencesLangmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403.pl
dc.description.referencesSpieker, W.A.; Liu, J.; Miller, J.T.; Kropf, A.J.; Regalbuto, J.R. An EXAFS study of the co-ordination chemistry of hydrogen hexachloroplatinate(IV) 1. Speciation in aqueous solution. Appl. Catal. A Gen. 2002, 232, 219–235.pl
dc.description.referencesCabuk, A.; Akar, T.; Tunali, S.; Gedikli, S. Biosorption of Pb(II) by industrial strain of Saccharomyces cerevisiae immobilized on the biomatrix of cone biomass of Pinus nigra: Equilibrium and mechanism analysis. Chem. Eng. J. 2007, 131, 293–300.pl
dc.description.referencesSarri, S.; Misaelides, P.; Papanikolaou, M.; Zambulis, D. Uranium removal from acidic aqueous solutions by Saccharomyces cerevisiae, Debaruomyces hansenii, Kluyveromyces marxianus and Candida colliculosa. J. Radioanal. Nucl. Chem. 2009, 279, 709–711.pl
dc.description.referencesChen, C.; Wang, J. Influence of metal ionic characteristic on their biosorption capacity by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2007, 74, 911–917.pl
dc.description.referencesNetzahuatl-Muñoz, A.R.; del Carmen Cristiani-Urbina, M.; Cristiani-Urbina, E. Chromium biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark: Kinetics, equilibrium an thermodynamic studies. PLoS ONE 2015, 10, e0137086.pl
dc.description.referencesHait, J.; Jana, R.K.; Sanyal, S.K. Processing of copper electrorefining anode slime: A review. Miner. Process. Extr. Metall. 2009, 118, 240–252.pl
dc.identifier.eissn2073-4441-
dc.description.volume11pl
dc.description.issue7pl
dc.description.firstpage1pl
dc.description.lastpage17pl
dc.identifier.citation2Waterpl
dc.identifier.orcid0000-0002-2576-4029-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0002-6100-0691-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons