REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/14992
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorMalejko, Julita-
dc.contributor.authorDeoniziak, Krzysztof-
dc.contributor.authorTomczuk, Marlena-
dc.contributor.authorDługokencka, Joanna-
dc.contributor.authorGodlewska-Żyłkiewicz, Beata-
dc.date.accessioned2023-05-22T07:10:47Z-
dc.date.available2023-05-22T07:10:47Z-
dc.date.issued2020-
dc.identifier.citationFrontiers in Chemistry, Volume 8 (2020), p. 1-14pl
dc.identifier.urihttp://hdl.handle.net/11320/14992-
dc.description.abstractIn this study, we present entomotoxicological data on the accumulation of cadmium and thallium in a forensically important blowfly, Lucilia sericata, and evaluate the reliability and utility of such information as toxicological evidence for poisoning as a cause of death. We observed that Cd and Tl content in different growing stages of L. sericata (larvae, puparial cases, and adults) was increasing with increasing metal concentration in the feeding substrate, namely metal-enriched liver. However, patterns of accumulation differed between the two metals investigated, showing a linear relationship for Cd and a saturable pattern for Tl. For cadmium, the highest bioaccumulation factor (BAF) was found in the larval stage (in the range of 0.20–0.25), while for thallium, puparial cases accumulated more metal than the other stages tested (BAF in the range of 0.24–0.42). Thallium was also observed to have a negative effect on larval growth, resulting in lower weight and smaller puparial size. With this study, we update the information on the bioaccumulation of cadmium in forensically important blowflies and provide the first report on the bioaccumulation of thallium as well as its developmental impact in blowflies. Specifically, our results suggest that analysis of puparial cases could yield useful information for entomotoxicological investigations. The content of Cd and Tl in larvae, puparial cases, and adults of L. sericata was determined by inductively coupled plasma mass spectrometry (ICP-MS). The validation parameters of the method such as sensitivity, detection limits, quantification limits, precision, and accuracy were evaluated. The method detection limit (MDL) for all types of samples was in the range of 1.6–3.4 ng g−1 for Cd and 0.034–0.15 ng g−1 for Tl, and the accuracy of the method was confirmed by a high recovery of metals from certified reference materials (91.3% for Cd and 94.3% for Tl).pl
dc.description.sponsorshipThis publication has received financial support from the Polish Ministry of Science and Higher Education under subsidy for maintaining the research potential of the Faculty of Biology and the Faculty of Chemistry, University of Bialystok.pl
dc.language.isoenpl
dc.publisherFrontiers Mediapl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectentomotoxicologypl
dc.subjectLucilia sericatapl
dc.subjectcadmiumpl
dc.subjectthalliumpl
dc.subjectbioaccumulation factorpl
dc.subjectICP-MSpl
dc.titlePuparial Cases as Toxicological Indicators: Bioaccumulation of Cadmium and Thallium in the Forensically Important Blowfly Lucilia sericatapl
dc.typeArticlepl
dc.rights.holderCopyright © 2020 Malejko, Deoniziak, Tomczuk, Długokencka and GodlewskaZyłkiewicz. This is an open-access article distributed under t ˙ he terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.pl
dc.identifier.doi10.3389/fchem.2020.586067-
dc.description.EmailKrzysztof Deoniziak: krzysztofdeo@gmail.compl
dc.description.EmailBeata Godlewska-Żyłkiewicz: bgodlew@uwb.edu.plpl
dc.description.AffiliationJulita Malejko - Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, Białystok, Polandpl
dc.description.AffiliationKrzysztof Deoniziak - Laboratory of Insect Evolutionary Biology and Ecology, Faculty of Biology, University of Bialystok, Białystok, Polandpl
dc.description.AffiliationMarlena Tomczuk - Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, Białystok, Polandpl
dc.description.AffiliationJoanna Długokencka - Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, Białystok, Polandpl
dc.description.AffiliationBeata Godlewska-Zyłkiewicz - Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, Białystok, Polandpl
dc.description.referencesAgency for Toxic Substances and Disease Registry. (1992). Toxicological Profile for Thallium. U.S. Public Health Service.pl
dc.description.referencesAgency for Toxic Substances and Disease Registry. (1999). Toxicological Profile for Cadmium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.pl
dc.description.referencesAl-Misned, F. A. M. (2001). Biological effects of cadmium on life cycle parameters of Chrysomya albiceps (Wiedemann) (Diptera: Calliphoridae). Kuwait J. Sci. Eng. 28, 179–188.pl
dc.description.referencesAl-Misned, F. A. M. (2003). Effect of cadmium on the longevity and fecundity of the blowfly Chrysomya albiceps (Wiedemann) (Diptera: Calliphoridae). Kuwait J. Sci. Eng. 30, 81–94.pl
dc.description.referencesBarwick, V. J., and Ellison, S. L. R. (2000). VAM Project 3.2.1 Development and Harmonisation of Measurement Uncertainty Principles, Part (d): Protocol for Uncertainty Evaluation from Validation Data. LGC (Teddington) Limited.pl
dc.description.referencesBelowitz, R., Leonard, E. M., and O’Donnell, M. J. (2014). Effects of exposure to high concentrations of waterborne Tl on K and Tl concentrations in Chironomus riparius larvae. Comp. Biochem. Phys. C. 166, 59–64. doi: 10.1016/j.cbpc.2014.07.003pl
dc.description.referencesBeyer, J., Enos, W., and Stalic, M. (1980). Drug identification through analysis of maggots. J. Forensic Sci. 25, 411–412. doi: 10.1520/JFS12147Jpl
dc.description.referencesBraga, M. V., Pinto, Z. T., Carvalho Queiroz, M. M., Matsumoto, N., and Blomquist, G. J. (2013). Cuticular hydrocarbons as a tool for the identification of insect species: puparial cases from Sarcophagidae. Acta Trop. 128, 479–485. doi: 10.1016/j.actatropica.2013.07.014pl
dc.description.referencesBrundage, A., and Byrd, J. H. (2016). Forensic entomology in animal cruelty cases. Vet. Path., 53, 898–909. doi: 10.1177/0300985816651683pl
dc.description.referencesBugelli, V., Campobasso, C. P., Verhoff, M. A., and Amendt, J. (2017b). Effects of different storage and measuring methods on larval length values for the blow flies (Diptera: Calliphoridae) Lucilia sericata and Calliphora vicina. Sci. Justice 57, 159–164. doi: 10.1016/j.scijus.2016.10.008pl
dc.description.referencesBugelli, V., Papi, L., Fornaro, S., Stefanelli, F., Chericoni, S., Giusiani, M., et al. (2017a). Entomotoxicology in burnt bodies: a case of maternal filicide-suicide by fire. Int. J. Legal Med. 133, 1299–1306. doi: 10.1007/s00414-017-1628-0pl
dc.description.referencesByrd, J. H., and Castner, J. L. (2010). “Insects of forensic importance,” in Forensic Entomology: the Utility of Arthropods in Legal Investigations, eds. J. H. Byrd, J. L. Castner (Boca Raton, FL: CRC Press), 39–126.pl
dc.description.referencesCampobasso, C. P., Gherardi, M., Caligara, M., Sironi, L., and Introna, F. (2004). Drug analysis in blowfly larvae and in human tissues: acomparative study. Int. J. Legal Med. 118, 210–214. doi: 10.1007/s00414-004-0448-1pl
dc.description.referencesCavanagh, J. B. (1991). What have we learnt from Graham Frederick Young? Reflections on the mechanism of thallium neurotoxicity. Neuropath. Appl. Neuro. 17, 3–9. doi: 10.1111/j.1365-2990.1991.tb00687.xpl
dc.description.referencesCervera, A., Maymó, A. C., Sendra, M., Martínez-Pardo, R., and Garcerá, M. D. (2004). Cadmium effects on development and reproduction of Oncopeltus fasciatus (Heteroptera: Lygaeidae). J. Insect Physiol. 50, 737–749. doi: 10.1016/j.jinsphys.2004.06.001pl
dc.description.referencesChang, Y., Wen, J., Cai, J., Xiao-Ying, W., Yang, L., and Yd, G. (2012). An investigation and pathological analysis of two fatal cases of cadmium poisoning. Forensic Sci. Int. 220, 1–3. doi: 10.1016/j.forsciint.2012.01.032pl
dc.description.referencesChophi, R., Sharma, S., Sharma, S., and Singh, R. (2019). Forensic entomotoxicology: current concepts, trends and challenges. J. Forensic Legal. Med. 67, 28–36. doi: 10.1016/j.jflm.2019.07.010pl
dc.description.referencesDesenclos, J. C., Wilder, M. H., Coppenger, G. W., Sherin, K., Tiller, R., and VanHook, R. M. (1992). Thallium poisoning: an outbreak in Florida, 1988. South. Med. J. 85, 1203–1206. doi: 10.1097/00007611-199212000-00012pl
dc.description.referencesDiener, S., Zurbrügg, C., and Tockner, K. (2015). Bioaccumulation of heavy metals in the black soldier fly, Hermetia illucens and effects on its life cycle. J. Insects as Food Feed. 1, 261–270. doi: 10.3920/JIFF2015.0030pl
dc.description.referencesDinis-Oliveira, R. J., Vieira, D. N., and Magalhães, T. (2016). Guidelines for collection of biological samples for clinical and forensic toxicological analysis. Forensic Sci. Res. 1, 42–51. doi: 10.1080/20961790.2016.1271098pl
dc.description.referencesGallagher, M. B., Sandhu, S., and Kimsey, R. (2010). Variation in developmental time for geographically distinct populations of the common green bottle fly, Lucilia sericata (Meigen). J. Forensic Sci. 55, 438–443. doi: 10.1111/j.1556-4029.2009.01285.xpl
dc.description.referencesGaudry, E., Myskowiak, J.-B., Chauvet, B., Pasquerault, T., Lefebvre, F., and Malgorn, Y. (2001). Activity of the forensic entomology department of the French Gendarmerie. Forensic Sci. Int. 120, 68–71. doi: 10.1016/S0379-0738(01)00427-3pl
dc.description.referencesGoff, M. L., Miller, M. L., Paulson, J. D., Lord, W. D., Richards, E., and Omori, A. I. (1997). Effects of 3,4-methylenedioxymethamphetamine in decomposing tissues on the development of Parasarcophaga ruficornis (Diptera:Sarcophagidae) and detection of the drug in postmortem blood, liver tissue, larvae, and puparia. J. Forensic Sci. 42, 276–280. doi: 10.1520/JFS14110Jpl
dc.description.referencesGreenberg, B. (1991). Flies as forensic indicators. J. Med. Entomol. 28, 565–577. doi: 10.1093/jmedent/28.5.565pl
dc.description.referencesHoffman, R. S., and Hoffman, R. (2000). Thallium poisoning during pregnancy: a case report and comprehensive literature review. J. Toxicol. Clin. Toxicol. 38, 767–775. doi: 10.1081/CLT-100102390pl
dc.description.referencesKarbowska, B. (2016). Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods. Environ. Monit. Assess. 188, 640. doi: 10.1007/s10661-016-5647-ypl
dc.description.referencesKramarz, P. (1999). Dynamics of accumulation and decontamination of cadmium and zinc in carnivorous invertebrates. 1. The ground beetle, Poecilus cupreus L. B. Environ. Contam. Toxiocol. 63, 531–537. doi: 10.1007/s001289901013pl
dc.description.referencesKraus, J. M., Walters, D. M., Wesner, J. S., Stricker, C. A., Schmidt, T. S., and Zuelling, R. E. (2014). Metamorphosis alters contaminants and chemical tracers in insects: Implications for food webs. Environ. Sci. Technol. 48, 10957–10965. doi: 10.1021/es502970bpl
dc.description.referencesLech, T., and Sadlik, J. K. (2017). Cadmium concentration in human autopsy tissues. Biol. Trace Elem. Res. 179, 172–177. doi: 10.1007/s12011-017-0959-5pl
dc.description.referencesLuo, M., Cao, H.-M., Fan, Y.-Y., Zhou, X.-C., Chen, J.-X., Chung, H., et al. (2020). Bioaccumulation of cadmium affects development, mating behavior, and fecundity in the Asian Corn Borer, Ostrinia furnacalis. Insects. 11:7. doi: 10.3390/insects11010007pl
dc.description.referencesMeggs, W. J., Hoffman, R. S., Shih, R. D., Weismann, R. S., and Goldfrank, L. R. (1994). Thallium poisoning from maliciously contaminated food. J. Toxicol. Clin. Toxicol. 32, 723–730. doi: 10.3109/15563659409017979pl
dc.description.referencesMiller, M., Lord, W., Goff, M., Donnelly, B., McDonough, E., and Alexis, J. (1994). Isolation of Amitriptyline and Nortriptyline from fly puparia (Phoridae) and beetle exuviae (Dermestidae) associated with mummified human remains. J. Forensic Sci. 39, 1305–1313. doi: 10.1520/JFS13717Jpl
dc.description.referencesMoe, S. J., Stenseth, N. C., and Smith, R. H. (2001). Effects of a toxicant on population growth rates: sublethal and delayed responses in blowfly populations. Funct. Ecol. 15, 712–721. doi: 10.1046/j.0269-8463.2001.00575.xpl
dc.description.referencesMuscatello, J. R., and Liber, K. (2009). Accumulation and chronic toxicity of uranium over different life stages of the aquatic invertebrate Chironomus tentans. Arch. Environ. Contam. Toxicol. 57, 531–539. doi: 10.1007/s00244-009-9283-1pl
dc.description.referencesNishijo, M., Nakagawa, H., Suwazono, Y., Nogawa, K., and Kido, T. (2017). Causes of death in patients with Itaiitai disease suffering from severe chronic cadmium poisoning: a nested case-control analysis of a follow-up study in Japan. BMJ Open 7:e015694. doi: 10.1136/bmjopen-2016-015694pl
dc.description.referencesNolte, K. B., Pinder, R. D., and Lord, W. D. (1992). Insect larvae used to detect cocaine poisoning in a decomposed body. J. Forensic Sci. 37, 1179–1185. doi: 10.1520/JFS13304Jpl
dc.description.referencesOrtel, J. (1996). Metal-supplemented diets alter carbohydrate levels in tissue and hemolymph of gypsy moth larvae (Lymantria dispar, Lymantriidae, Lepidoptera). Environ. Toxicol. Chem. 15, 1171–1176. doi: 10.1002/etc.5620150723pl
dc.description.referencesOwings, C. G., Banerjee, A., Asher, T. M. D., Gilhooly, W. P. III., Tuceryan, A., Huffine, M., et al. (2019). Female blow flies as vertebrate resource indicators. Sci. Rep. 9:10594. doi: 10.1038/s41598-019-46758-9pl
dc.description.referencesPłachetka-Bozek, A., Kafel, A., and Augustyniak, M. (2018). Reproduction and development of Spodoptera exigua from cadmium and control strains under differentiated cadmium stress. Ecotoxicol. Environ. Saf. 166, 138–145. doi: 10.1016/j.ecoenv.2018.09.016pl
dc.description.referencesPounder, D. J. (1991). Forensic entomo-toxicology. J. Forensic Sci. Soc. 31, 469–472. doi: 10.1016/S0015-7368(91)73189-7pl
dc.description.referencesPowers, R. H., and Dean, D. E. (2015). Forensic Toxicology: Mechanisms and Pathology. Boca Raton, FL: CRC Press.pl
dc.description.referencesPrado e Castro, C., Serrano, A., Martins da Silva, P., and Garcia, M. D. (2012). Carrion flies of forensic interest: a study of seasonal community composition and succession in Lisbon, Portugal. Med. Vet. Entomol. 26, 417–431. doi: 10.1111/j.1365-2915.2012.01031.xpl
dc.description.referencesPurschke, B., Scheibelberger, R., Axmann, S., Adler, A., and Jäger, H. (2017). Impact of substrate contamination with mycotoxins, heavy metals and pesticides on the growth performance and composition of black soldier fly larvae (Hermetia illucens) for use in the feed and food value chain. Food Addit. Contam. Part A. 34, 1410–1420. doi: 10.1080/19440049.2017.1299946pl
dc.description.referencesRafati Rahimzadeh, M., Rafati Rahimzadeh, M., Kazemi, S., and Moghadamnia, A. A. (2017). Cadmium toxicity and treatment: an update. Caspian J. Intern. Med. 8, 135–145. doi: 10.22088/cjim.8.3.135pl
dc.description.referencesReibe, S., Doetinchem, P., and Madea, B. (2010). A new simulationbased model for calculating post-mortem intervals using developmental data for Lucilia sericata (Dipt.: Calliphoridae). Parasitol. Res. 107, 9–16. doi: 10.1007/s00436-010-1879-xpl
dc.description.referencesReith, S. (2009). Toxicological Review of Thallium and Compounds. Washington, DC: U.S. Environmental Protection Agency.pl
dc.description.referencesSakai, K. (2015). Routine Soil Analysis Using an Agilent 8800 ICP-QQQ. Application note. Agilent Technologies.pl
dc.description.referencesSchmidt, G. H., Ibrahim, N. M. M., and Abdallah, M. D. (1992). Longterm effects of heavy metals in food on developmental stages of Aiolopus thalassinus (Saltatoria: Acrididae). Arch. Environ. Con. Tox. 23, 375–382. doi: 10.1007/BF00216248pl
dc.description.referencesSigel, A., Sigel, H., and Sigel, R. K. O. (2013). Cadmium: From Toxicity to Essentiality. New York, NY: Springer.pl
dc.description.referencesSildanchandra, W., and Crane, M. (2009). Influence of sexual dimorphism in Chironomus riparius Meigen on toxic effects of cadmium. Environ. Toxicol. Chem. 19, 2309–2313. doi: 10.1002/etc.5620190921pl
dc.description.referencesSilva, E. I. T., Wilhelmi, B., and Villet, M. H. (2017). Forensic entomotoxicology revisited - towards professional standardisation of study designs. Int. J. Leg. Med. 131, 1399–1412. doi: 10.1007/s00414-017-1603-9pl
dc.description.referencesSimkiss, K., Daniels, S., and Smith, R. H. (1993). Effects of population density and cadmium toxicity on growth and survival of blowflies. Environ. Pollut. 81, 41–45. doi: 10.1016/0269-7491(93)90026-Kpl
dc.description.referencesSimon, E., Tóthmérész, B., Kis, O., Jakab, T., Szalay, P. E., Vincze, A., et al. (2019). Environmental-friendly contamination assessment of habitats based on the trace element content of dragonfly exuviae. Water 11, 2200. doi: 10.3390/w11112200pl
dc.description.referencesSingh, D., and Bhupinderjit, K. H. (2017). Effect of cadmium chloride on the development of Chrysomya megacephala (Diptera:Calliphoridae) and its importance to postmortem interval estimate. J. Forensic Sci. Criminal Invest. 3, 555622. doi: 10.19080/JFSCI.2017.03.555622pl
dc.description.referencesTimmermans, K. R., Peeters, W., and Tonkes, M. (1992). Cadmium, zinc, lead and copper in Chironomus riparius (Meigen) larvae (Diptera, Chironomidae): uptake and effects. Hydrobiologia. 241, 119–134. doi: 10.1007/BF00 008264pl
dc.description.referencesTracqui, A., Keyser-Tracqui, C., Kintz, P., and Ludes, B. (2004). Entomotoxicology for the forensic toxicologist: much ado about nothing? Int. J. Legal Med. 118, 194–196. doi: 10.1007/s00414-004-0442-7pl
dc.description.referencesWang, J., Li, Z., Chen, Y., Chen, Q., and Yin, X. (2008). The succession and development of insects on pig carcasses and their significances in estimating PMI in south China. Forensic Sci. Int. 179, 11–18. doi: 10.1016/j.forsciint.2008.04.014pl
dc.description.referencesZhu, G.-H., Jia, Z.-J., Yu, X.-J., Wu, K.-S., Chen, L.-S., Lv, J.-Y., et al. (2017). Predictable weathering of puparial hydrocarbons of necrophagous flies for determining the postmortem interval: a field experiment using Chrysomya rufifacies. Int. J. Legal Med. 131, 885–894. doi: 10.1007/s00414-016-1507-0pl
dc.identifier.eissn2296-2646-
dc.description.volume8pl
dc.description.firstpage1pl
dc.description.lastpage14pl
dc.identifier.citation2Frontiers in Chemistrypl
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons