REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/14989
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorTrzonkowska, Laura-
dc.contributor.authorLeśniewska, Barbara-
dc.contributor.authorGodlewska-Żyłkiewicz, Beata-
dc.date.accessioned2023-05-19T11:00:40Z-
dc.date.available2023-05-19T11:00:40Z-
dc.date.issued2022-
dc.identifier.citationWater, Vol. 14 Issue 4 (2022), pp. 1-16pl
dc.identifier.urihttp://hdl.handle.net/11320/14989-
dc.description.abstractIn this work, a new solid phase extraction method for the determination of chromium species in water samples by electrothermal atomic absorption spectrometry was developed. For selective separation of Cr(III) ions under dynamic conditions, two ion imprinted polymers containing Cr(III)-1,10-phenanthroline complex (Cr(III)-phen) were prepared with the use of one (styrene, ST) or two (styrene and 4-vinylpyridine, ST-4VP) functional monomers. The physicochemical properties of those solid sorbents towards Cr(III) ions were studied and compared. It was found that Cr(III) ions were retained on the Cr(III)-phen-ST and Cr(III)-phen-ST-4VP polymers with high efficiency and repeatability (91.6% and 92.9%, RSD < 2%) from solutions at pH 4.5. The quantitative recovery of the analyte (91.7% and 93.9%, RSD < 4%) was obtained with 0.1 mol/L EDTA solution. The introduction of 4VP, an additional functional monomer, improved selectivity of the Cr(III)-phen-ST-4VP polymer towards Cr(III) ions in the presence of Cu(II), Mn(II) and Fe(III) ions, and slightly decreased the sorption capacity and stability of that polymer. The accuracy of procedures based on both polymeric sorbents was proved by analyzing the standard reference material of surface water SRM 1643e. The method using the Cr(III)-phen-ST polymer was applied for determining of Cr(III) ions in tap water and infusion of a green tea.pl
dc.description.sponsorshipResearch work financed by the Ministry of Science and Education as part of a grant for maintaining research potential awarded to the Faculty of Chemistry, University of Bialystok.pl
dc.language.isoenpl
dc.publisherMDPIpl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectChromium(III)pl
dc.subjectseparationpl
dc.subjectSPEpl
dc.subjection imprinted polymerpl
dc.subjectwaterpl
dc.titleDevelopment of Solid Phase Extraction Method Based on Ion Imprinted Polymer for Determination of Cr(III) Ions by ETAAS in Waterspl
dc.typeArticlepl
dc.rights.holder© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) licensepl
dc.identifier.doi10.3390/w14040529-
dc.description.EmailLaura Trzonkowska: ; laurita88@interia.eupl
dc.description.EmailBarbara Leśniewska: : blesniew@uwb.edu.plpl
dc.description.EmailBeata Godlewska-Żyłkiewicz: ; bgodlew@uwb.edu.plpl
dc.description.AffiliationLaura Trzonkowska - Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystokpl
dc.description.AffiliationBarbara Leśniewska - Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystokpl
dc.description.AffiliationBeata Godlewska-Żyłkiewicz - Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystokpl
dc.description.referencesDhal, B.; Thatoi, H.N.; Das, N.N.; Pandey, B.D. Chemical and microchemical remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mater. 2013, 250–251, 272–291.pl
dc.description.referencesSawicka, E.; Jurkowska, K.; Piwowar, A. Chromium(III) and chromium(VI) as important players in the induction of gentoxicity—Current view. Ann. Agric. Environ. Med. 2021, 28, 1–10.pl
dc.description.referencesMetze, D.; Jakubowski, N.; Klockow, D. Speciation of chromium in environment and food. In Handbook of Elemental Speciation II: Species in the Environment, Food, Medicine and Occupational Health; Cornelis, R., Crews, H., Caruso, J., Heumann, K.G., Eds.; John Wiley and Sons, Ltd.: Chichester, UK, 2005; pp. 120–134.pl
dc.description.referencesVincent, J.B. New evidence against chromium as an essential trace element. J. Nutr. 2017, 147, 2212–2219.pl
dc.description.referencesEFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific opinion on Dietary Reference Values for chromium. EFSA J. 2014, 12, 3845.pl
dc.description.referencesStaniek, H.; Krejpcio, Z.; Wieczorek, D. The effects of high dietary doses of chromium(III) complex with propionic acid on nutritional and selected blood indices in healthy female rats. Biol. Trace. Elem. Res. 2016, 171, 192–200.pl
dc.description.referencesFang, Z.; Zhao, M.; Zhen, H.; Chen, L.; Shi, P.; Huang, Z. Genotoxicity of tri- and hexavalent chromium compounds in vivo and their modes of action on DNA damage in vitro. PLoS ONE 2014, 9, e103194.pl
dc.description.referencesKotaś, J.; Stasicka, Z. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 2000, 107, 263–283.pl
dc.description.referencesKumar, R.A.; Riyazuddin, P. Chromium speciation in a contaminated groundwater: Redox processes and temporal variability. Environ. Monit. Assess. 2011, 176, 647–662.pl
dc.description.referencesBakshi, A.; Panigrahi, A.K. A comprehensive review on chromium induced alterations in fresh water fishes. Toxicol. Rep. 2018, 5, 440–447.pl
dc.description.referencesEuropean Council, Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. Off. J. 1998, L330, 32–54.pl
dc.description.referencesSpanu, D.; Monticelli, D.; Binda, G.; Dossi, C.; Rampazzi, L.; Recchia, S. One-minute highly selective Cr(VI) determination at ultra-trace levels: An ICP-MS method based on the on-line trapping of Cr(III). J. Hazard. Mat. 2021, 412, 125280.pl
dc.description.referencesWani, A.A.; Khan, A.M.; Manea, Y.K.; Salem, M.A.S.; Shahadat, M. Selective adsorption and ultrafast fluorescent detection of Cr(VI) in wastewater using neodymium doped polyaniline supported layered double hydroxide nanocomposite. J. Hazard. Mat. 2021, 416, 125754.pl
dc.description.referencesTrzonkowska, L.; Leśniewska, B.; Godlewska-Żyłkiewicz, B. Recent advances in on-line methods based on extraction for speciation ˙analysis of chromium in environmental matrices. Crit. Rev. Anal. Chem. 2015, 17, 305–322.pl
dc.description.referencesDiniz, K.M.; Teixeira Tarley, C.R. Specition analysis of chromium in water samples through sequential combination of dispersive magnetic solid phase extraction using mesoporous amino-functionalized Fe3O4-SiO2 nanoparticles and cloud point extraction. Microchem. J. 2015, 123, 185–195.pl
dc.description.referencesHerrero-Latorre, C.; Barciela-García, J.; García-Martín, S.; Pena-Crecente, R.M. Graphene and carbon nanotubes as solid phase extraction sorbents for the speciation of chromium: A review. Anal. Chim. Acta 2018, 1002, 1–17.pl
dc.description.referencesMohammadkhani, S.; Gholami, M.R.; Aghaie, M. Thermodynamic study of Cr+3 ions removal by “MnO2/MWCNT” nanocomposite. Orient. J. Chem. 2015, 31, 1429–1436.pl
dc.description.referencesRezvani, M.; Asgharinezhad, A.A.; Ebrahimzadeh, H.; Shekari, N. A polyaniline-magnetite nanocomposite as an anion exchange sorbent for solid-phase extraction of chromium(VI) ions. Microchim. Acta 2014, 181, 1887–1895.pl
dc.description.referencesKarimi, M.A.; Shahin, R.; Mohammadi, S.Z.; Hatefi-Mehrjardi, A.; Hashemi, J.; Yarahmadi, J. Speciation analysis of Cr(III) and Cr(VI) after solid phase extraction using modified magnetite nanoparticles. J. Chin. Chem. Soc. 2013, 60, 1339–1346.pl
dc.description.referencesBranger, C.; Meouche, W.; Margaillan, A. Recent advances on ion-imprinted polymers. React. Funct. Polym. 2013, 73, 859–875.pl
dc.description.referencesEl Ouardi, Y.; Giove, A.; Laatikainen, M.; Branger, C.; Laatikainen, K. Benefit of ion imprinting technique in solid-phase extraction of heavy metals, special focus on the last decade. J. Environ. Chem. Eng. 2021, 9, 106548.pl
dc.description.referencesZambrzycka-Szelewa, E.; Leśniewska, B.; Godlewska-Żyłkiewicz, B. Preparation and application of ion-imprinted polymer ˙sorbents in separation process of trace metals. In MIP Synthesis, Characteristics and Analytical Application; Mar´c, M., Ed.; Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; Volume 86, pp. 261–293.pl
dc.description.referencesBirlik, E.; Ersoz, A.; Denizil, A.; Say, R. Cr(III)-imprinted polymeric beads: Sorption and preconcentration studies. J. Hazard. Mater. 2007, 140, 110–116.pl
dc.description.referencesLeśniewska, B.; Jakubowska, I.; Zambrzycka, E.; Godlewska-Żyłkiewicz, B. A novel ion-imprinted polymeric sorbent for ˙separation and determination of chromium(III) species in wastewater. Turk. J. Chem. 2016, 40, 933–943.pl
dc.description.referencesLeśniewska, B.; Trzonkowska, L.; Zambrzycka, E.; Godlewska-Żyłkiewicz, B. Multi-commutation flow system with on-line solid ˙phase extraction exploiting the ion-imprinted polymer and FAAS detection for chromium speciation analysis in sewage samples. Anal. Methods 2015, 7, 1517–1526.pl
dc.description.referencesLeśniewska, B.; Jeglikowska, A.; Godlewska-Żyłkiewicz, B. Chromium speciation in wastewater and sewage by solid-phase ˙ extraction using a new diphenylcarbazone-incorporated resin. Water Air Soil Pollut. 2016, 227, 291.pl
dc.description.referencesLeśniewska, B.; Godlewska-Żyłkiewicz, B.; Wilczewska, A.Z. Separation and preconcentration of trace amounts of Cr(III) ions on ˙ion imprinted polymer for atomic absorption determinations in surface water and sewage samples. Microchem. J. 2012, 105, 88–93.pl
dc.description.referencesIzzataddini, A.; Nurani, D.A.; Rahayu, D.U.C.; Abdullah, I. Preparation and characterization of an ion imprinted polymer for selective separation of Cr(III) ions from water. AIP Conf. Proc. 2020, 2242, 040036.pl
dc.description.referencesAn, F.; Gao, B. Adsorption characteristics of Cr(III) ionic imprinting polyamine on silica gel surface. Desalination 2009, 249, 1390–1396.pl
dc.description.referencesZhang, N.; Suleiman, J.S.; He, M.; Hu, B. Chromium(III)-imprinted silica gel for speciation analysis of chromium in environmental water samples with ICP-MS detection. Talanta 2008, 75, 536–543.pl
dc.description.referencesLiu, Y.; Meng, X.; Han, J.; Liu, Z.; Meng, M.; Wang, Y.; Chen, R.; Tian, S. Speciation, adsorption and determination of chromium(III) and chromium(VI) on a mesoporous surface imprinted polymer adsorbent by combining inductively coupled plasma atomic emission spectrometry and UV spectrophotometry. J. Sep. Sci. 2013, 36, 3949–3957.pl
dc.description.referencesCen, S.; Li, W.; He, R.; Tan, J.; Wang, H.; Wei, C.; Tang, Y. Preparation of an ion imprinted functionalized mesoporous silica for rapid and specific absorption Cr(III) ions in effluents. RSC Adv. 2017, 7, 37778–37786.pl
dc.description.referencesJamshidi, M.; Ghaedi, M.; Dashtian, K.; Hajati, S. New ion-imprinted polymer-functionalized mesoporous SBA-15 for selective separation and preconcentration of Cr(III) ions: Modeling and optimization. RSC Adv. 2015, 5, 105789–105799.pl
dc.description.referencesTrzonkowska, L.; Leśniewska, B.; Godlewska-Żyłkiewicz, B. Studies on the effect of functional monomer and porogen on the ˙properties of ion imprinted polymer based on Cr(III)-1,10-phenanthroline complex designer for selective removal of Cr(III) ions. React. Funct. Polym. 2017, 117, 131–139.pl
dc.description.referencesGao, X. Cis-dichloridobis(1,10-phenanthroline)chromium(III) chloride. Acta Cryst. 2011, E67, m139.pl
dc.description.referencesHoet, P. Speciation of chromium in occupational exposure and clinical aspects. In Handbook of Elemental Speciation II: Species in the Environment, Food, Medicine and Occupational Health; Cornelis, R., Crews, H., Caruso, J., Heumann, K.G., Eds.; John Wiley and Sons, Ltd.: Chichester, UK, 2005; pp. 135–157.pl
dc.description.referencesInczedy, J.; Lengyel, T.; Ure, A.M.; Gelencser, A.; Hulanicki, A. Compendium of Analytical Nomenclature, 3rd ed.; IUPAC, Blackwell Science: Oxford, UK, 1998.pl
dc.description.referencesTiwari, S.; Sharma, N.; Saxena, R. On-line speciation of chromium using a modified chelating resin and determination in industrial water samples by flame atomic absorption spectrometry. New J. Chem. 2016, 40, 1412–1419.pl
dc.description.referencesSaxena, R.; Sharma, N.; Tiwari, S. Chromium speciation using flow-injection preconcentration on xylenol orange functionalized Amberlite XAD-16 and determination in industrial water samples by flame atomic absorption spectrometry. Anal. Sci. 2015, 31, 1303–1308.pl
dc.description.referencesKarak, T.; Bhagat, R.M. Trace elements in tea leaves, made tea and tea infusion: A review. Food Res. Int. 2010, 43, 2234–2252.pl
dc.description.referencesHamilton, E.M.; Young, S.D.; Bailey, E.H.; Watts, M.J. Chromium speciation in foodstuffs: A review. Food Chem. 2011, 129, 1839–1843.pl
dc.description.referencesXiong, W.; Cheng, C.; Yang, Y. Determination of total chromium in tea samples by suspension dispersive solid phase extraction combined with silver nanoparticles and using flame atomic absorption spectrometry. Anal. Methods 2015, 7, 2093–2099.pl
dc.identifier.eissn2073-4441-
dc.description.volume14pl
dc.description.issue4pl
dc.description.firstpage1pl
dc.description.lastpage16pl
dc.identifier.citation2Waterpl
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0002-7127-5701-
dc.identifier.orcid0000-0002-2576-4029-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons