Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/14988
Pełny rekord metadanych
Pole DC | Wartość | Język |
---|---|---|
dc.contributor.author | Arciszewska, Żaneta | - |
dc.contributor.author | Gama, Sofia | - |
dc.contributor.author | Kalinowska, Monika | - |
dc.contributor.author | Świderski, Grzegorz | - |
dc.contributor.author | Świsłocka, Renata | - |
dc.contributor.author | Gołębiewska, Ewelina | - |
dc.contributor.author | Naumowicz, Monika | - |
dc.contributor.author | Worobiczuk, Mateusz | - |
dc.contributor.author | Cudowski, Adam | - |
dc.contributor.author | Pietryczuk, Anna | - |
dc.contributor.author | De Stefano, Concetta | - |
dc.contributor.author | Milea, Demetrio | - |
dc.contributor.author | Lewandowski, Włodzimierz | - |
dc.contributor.author | Godlewska-Żyłkiewicz, Beata | - |
dc.date.accessioned | 2023-05-19T10:27:59Z | - |
dc.date.available | 2023-05-19T10:27:59Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | International Journal of Molecular Sciences, Volume 23 Issue 2 (2022), pp.1-29 | pl |
dc.identifier.issn | 1661-6596 | - |
dc.identifier.uri | http://hdl.handle.net/11320/14988 | - |
dc.description.abstract | Caffeic acid (CFA) is one of the various natural antioxidants and chemoprotective agents occurring in the human diet. In addition, its metal complexes play fundamental roles in biological systems. Nevertheless, research on the properties of CFA with lanthanide metals is very scarce, and little to no chemical or biological information is known about these particular systems. Most of their properties, including their biological activity and environmental impact, strictly depend on their structure, stability, and solution behaviour. In this work, a multi-analytical-technique approach was used to study these relationships for the Eu(III)/CFA complex. The synthesized metal complex was studied by FT-IR, FT-Raman, elemental, and thermal (TGA) analysis. In order to examine the chemical speciation of the Eu(III)/CFA system in an aqueous solution, several independent potentiometric and spectrophotometric UV-Vis titrations were performed at different M:L (metal:ligand) and pH ratios. The general molecular formula of the synthesized metal complex in the solid state was [Eu(CFA)3(H2O)3]·2H2O (M:L ratio 1:3), while in aqueous solution the 1:1 species were observed at the optimum pH of 6 ≤ pH ≤ 10, ([Eu(CFA)] and [Eu(CFA)(OH)]−). These results were confirmed by 1H-NMR experiments and electrospray-ionization mass spectrometry (ESI-MS). To evaluate the interaction of Eu(III)/CFA and CFA alone with cell membranes, electrophoretic mobility assays were used. Various antioxidant tests have shown that Eu(III)/CFA exhibits lower antioxidant activity than the free CFA ligand. In addition, the antimicrobial properties of Eu(III)/CFA and CFA against Escherichia coli, Bacillus subtilis and Candida albicans were investigated by evaluation of the minimum inhibitory concentration (MIC). Eu(III)/CFA shows higher antibacterial activity against bacteria compared to CFA, which can be explained by the highly probable increased lipophilicity of the Eu(III) complex. | pl |
dc.description.sponsorship | This research was funded by the National Science Centre (NCN), Poland, under the research project number 2018/29/B/NZ9/01997. This publication is also based upon work from COST Action CA18202—NECTAR—Network for Equilibria and Chemical Thermodynamics Advanced Research, supported by COST (European Cooperation in Science and Technology). | pl |
dc.language.iso | en | pl |
dc.publisher | MDPI | pl |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | antimicrobial activity | pl |
dc.subject | antioxidant activity | pl |
dc.subject | chemical speciation | pl |
dc.subject | lanthanides | pl |
dc.subject | metal complexes | pl |
dc.subject | microelectrophoretic mobility | pl |
dc.subject | polyphenols | pl |
dc.subject | sequestering ability | pl |
dc.subject | solution equilibria | pl |
dc.title | Caffeic Acid/Eu(III) Complexes: Solution Equilibrium Studies, Structure Characterization and Biological Activity | pl |
dc.type | Article | pl |
dc.rights.holder | © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license | pl |
dc.identifier.doi | 10.3390/ijms23020888 | - |
dc.description.Email | Żaneta Arciszewska: z.arciszewska@uwb.edu.pl | pl |
dc.description.Email | Sofia Gama: a.gama@uwb.edu.pl | pl |
dc.description.Email | Monika Kalinowska: m.kalinowska@pb.edu.pl | pl |
dc.description.Email | Grzegorz Świderski: g.swiderski@pb.edu.pl | pl |
dc.description.Email | Renata Świsłocka: r.swislocka@pb.edu.pl | pl |
dc.description.Email | Ewelina Gołębiewska: e.golebiewska@pb.edu.pl | pl |
dc.description.Email | Monika Naumowicz: monikan@uwb.edu.pl | pl |
dc.description.Email | Mateusz Worobiczuk: mworobiczuk@gmail.com | pl |
dc.description.Email | Adam Cudowski: cudad@uwb.edu.pl | pl |
dc.description.Email | Anna Pietryczuk: annapiet@uwb.edu.pl | pl |
dc.description.Email | Concetta De Stefano: cdestefano@unime.it | pl |
dc.description.Email | Demetrio Milea: dmilea@unime.it | pl |
dc.description.Email | Włodzimierz Lewandowski: ; w.lewandowski@pb.edu.pl | pl |
dc.description.Email | Beata Godlewska-Żyłkiewicz: bgodlew@uwb.edu.pl | pl |
dc.description.Affiliation | Żaneta Arciszewska - Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok | pl |
dc.description.Affiliation | Sofia Gama - Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok | pl |
dc.description.Affiliation | Monika Kalinowska - Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology | pl |
dc.description.Affiliation | Grzegorz Świderski - Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology | pl |
dc.description.Affiliation | Renata Świsłocka - Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology | pl |
dc.description.Affiliation | Ewelina Gołębiewska - Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology | pl |
dc.description.Affiliation | Monika Naumowicz - Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok | pl |
dc.description.Affiliation | Mateusz Worobiczuk - Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok | pl |
dc.description.Affiliation | Adam Cudowski - Department of Water Ecology, Faculty of Biology, University of Bialystok | pl |
dc.description.Affiliation | Anna Pietryczuk - Department of Water Ecology, Faculty of Biology, University of Bialystok | pl |
dc.description.Affiliation | Concetta De Stefano - Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, CHIBIOFARAM, Università degli Studi di Messina | pl |
dc.description.Affiliation | Demetrio Milea - Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, CHIBIOFARAM, Università degli Studi di Messina | pl |
dc.description.Affiliation | Włodzimierz Lewandowski - Prof Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute | pl |
dc.description.Affiliation | Beata Godlewska-Żyłkiewicz - Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok | pl |
dc.description.references | Godlewska-Żyłkiewicz, B.; Świsłocka, R.; Kalinowska, M.; Golonko, A.; Świderski, G.; Arciszewska, Ż.; Nalewajko-Sieliwoniuk, E.; Naumowicz, M.; Lewandowski, W. Biologically Active Compounds of Plants: Structure-Related Antioxidant, Microbiological and Cytotoxic Activity of Selected Carboxylic Acids. Materials 2020, 13, 4454. | pl |
dc.description.references | Fu, J.; Cheng, K.; Zhang, Z.-M.; Fang, R.-Q.; Zhu, H.-L. Synthesis, structure and structure–activity relationship analysis of caffeic acid amides as potential antimicrobials. Eur. J. Med. Chem. 2010, 45, 2638–2643. | pl |
dc.description.references | Georgiev, L.; Chochkova, M.; Totseva, I.; Seizova, K.; Marinova, E.; Ivanova, G.; Ninova, M.; Najdenski, H.; Milkova, T. Anti-tyrosinase, antioxidant and antimicrobial activities of hydroxycinnamoylamides. Med. Chem. Res. 2013, 22, 4173–4182. | pl |
dc.description.references | Lima, V.N.; Oliveira-Tintino, C.D.; Santos, E.S.; Morais, L.P.; Tintino, S.R.; Freitas, T.S.; Geraldo, Y.S.; Pereira, R.L.; Cruz, R.P.; Menezes, I.R.; et al. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microb. Pathog. 2016, 99, 56–61. | pl |
dc.description.references | Kyselka, J.; Rabiej, D.; Dragoun, M.; Kreps, F.;Burčová,, Z.; Němečková,, I.; Smolová, J.; Bjelková, M.; Szydłowska-Czerniak, A.; Schmidt, Š.; et al. Antioxidant and antimicrobial activity of linseed lignans and phenolic acids. Eur. Food Res.Tech. 2017, 243, 1633–1644. | pl |
dc.description.references | Kępa, M.; Miklasińska-Majdanik, M.; Wojtyczka, R.D.; Idzik, D.; Korzeniowski, K.; Smoleń-Dzirba, J.; Wąsik, T.J. Antimicrobial Potential of Caffeic Acid against Staphylococcus aureus: Clinical Strains. BioMed Res. Int. 2018, 2018, 7413504. | pl |
dc.description.references | Khan, F.; Bamunuarachchi, N.I.; Tabassum, N.; Kim, Y.-M. Caffeic Acid and Its Derivatives: Antimicrobial Drugs toward Microbial Pathogens. J. Agric. Food Chem. 2021, 69, 2979–3004. | pl |
dc.description.references | Damasceno, S.; Dantas, B.; Ribeiro-Filho, J.; Antônio, M.; Galberto, M. Chemical Properties of Caffeic and Ferulic Acids in Biological System: Implications in Cancer Therapy. A Review. Curr. Pharm. Des. 2017, 23, 3015–3023. | pl |
dc.description.references | Świsłocka, R. Spectroscopic (FT-IR, FT-Raman, UV absorption, 1H and 13C NMR) and theoretical (in B3LYP/6-311++G** level) studies on alkali metal salts of caffeic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 100, 21–30. | pl |
dc.description.references | Matejczyk, M.; Świsłocka, R.; Golonko, A.; Lewandowski, W.; Hawrylik, E. Cytotoxic, genotoxic and antimicrobial activity of ´caffeic and rosmarinic acids and their lithium, sodium and potassium salts as potential anticancer compounds. Adv. Med. Sci.2018, 63, 14–21. | pl |
dc.description.references | Cornard, J.P.; Lapouge, C. Theoretical and Spectroscopic Investigations of a Complex of Al(III) with Caffeic Acid. J. Phys. Chem. A 2004, 108, 4470–4478. | pl |
dc.description.references | Cornard, J.-P.; Caudron, A.; Merlin, J.-C. UV–visible and synchronous fluorescence spectroscopic investigations of the complexation of Al(III) with caffeic acid, in aqueous low acidic medium. Polyhedron 2006, 25, 2215–2222. | pl |
dc.description.references | Thoma, V.; Tampouris, K.; Petrou, A.L. Kinetics and mechanism of the reaction between chromium(III) and 3,4-dihydroxy-phenylpropenoic acid (caffeic acid) in weak acidic aqueous solutions. Bioinorg. Chem. Appl. 2008, 2008, 624583. | pl |
dc.description.references | Boilet, L.; Cornard, J.P.; Lapouge, C. Determination of the Chelating Site Preferentially Involved in the Complex of Lead(II) with Caffeic Acid: A Spectroscopic and Structural Study. J. Phys. Chem. A 2005, 109, 1952–1960. | pl |
dc.description.references | De Stefano, C.; Foti, C.; Giuffrè, O.; Sammartano, S. Acid–base and UV behavior of 3-(3,4-dihydroxyphenyl)-propenoic acid (caffeic acid) and complexing ability towards different divalent metal cations in aqueous solution. J. Mol. Liq. 2014, 195, 9–16. | pl |
dc.description.references | Živanović, S.C.; Veselinovi´c, A.M.; Mitić, Ž.J.; Nikolić, G.M. The study of the influence of Mg(II) and Ca(II) ions on caffeic acid autoxidation in weakly alkaline aqueous solution using MCR-ALS analysis of spectrophotometric data. New J. Chem. 2018, 42, 6256–6263. | pl |
dc.description.references | Liddle, S.T.; Mills, D.P.; Natrajan, L.S. The Lanthanides and Actinides; World Scientific Publishing Europe Ltd.: London, UK, 2021. | pl |
dc.description.references | Crea, F.; De Stefano, C.; Milea, D.; Sammartano, S. Thermodynamic data for lanthanoid(III) sequestration by phytate at different temperatures. Monatsh. Chem. 2010, 141, 511–520. | pl |
dc.description.references | Cigala, R.M.; De Stefano, C.; Irto, A.; Milea, D.; Sammartano, S. Thermodynamic Data for the Modeling of Lanthanoid(III) Sequestration by Reduced Glutathione in Aqueous Solution. J. Chem. Eng. Data 2015, 60, 192–201. | pl |
dc.description.references | Cotruvo, J.A., Jr. The Chemistry of Lanthanides in Biology: Recent Discoveries, Emerging Principles, and Technological Applications. ACS Cent. Sci. 2019, 5, 1496–1506. | pl |
dc.description.references | Kostova, I.; Traykova, M. Cerium(III) and neodymium(III) complexes as scavengers of X/XO-derived superoxide radical. Med. Chem. 2006, 2, 463–470. | pl |
dc.description.references | Kostova, I.; Peica, N.; Kiefer, W. Theoretical and spectroscopic studies of 5-aminoorotic acid and its new lanthanide(III) complexes. J. Raman Spectrosc. 2007, 38, 205–216. | pl |
dc.description.references | Kostova, I.; Momekov, G. New cerium(III) complexes of coumarins—Synthesis, characterization and cytotoxicity evaluation. Eur. J. Med. Chem. 2008, 43, 178–188. | pl |
dc.description.references | Kostova, I.; Valcheva-Traykova, M. New samarium(III) complex of 5-aminoorotic acid with antioxidant activity. Appl. Organometal. Chem. 2015, 29, 815–824. | pl |
dc.description.references | Ajlouni, A.M.; Abu-Salem, Q.; Taha, Z.A.; Hijazi, A.K.; Al Momani, W. Synthesis, characterization, biological activities and luminescent properties of lanthanide complexes with [2-thiophenecarboxylic acid, 2-(2-pyridinylmethylene)hydrazide] Schiff bases ligand. J. Rare Earths 2016, 34, 986–993. | pl |
dc.description.references | Kaczmarek, M.T.; Zabiszak, M.; Nowak, M.; Jastrzab, R. Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord. Chem. Rev. 2018, 370, 42–54. | pl |
dc.description.references | Cota, I.; Marturano, V.; Tylkowski, B. Ln complexes as double faced agents: Study of antibacterial and antifungal activity. Coord.Chem. Rev. 2019, 396, 49–71. | pl |
dc.description.references | Kostova, I. Lanthanides as anticancer agents. Curr. Med. Chem. Anticancer Agents 2005, 5, 591–602. | pl |
dc.description.references | Boldyrev, I.A.; Gaenko, G.P.; Moiseeva, E.V.; Deligeorgiev, T.; Kaloyanova, S.; Lesev, N.; Vasilev, A.; Molotkovsky, J.G. Europium complexes of 1,10-phenanthrolines: Their inclusion in liposomes and cytotoxicity. Russ. J. Bioorg. Chem. 2011, 37, 364–368. | pl |
dc.description.references | Trusova, V.; Yudintsev, A.; Limanskaya, L.; Gorbenko, G.; Deligeorgiev, T. Europium coordination complexes as potential anticancer drugs: Their partitioning and permeation into lipid bilayers as revealed by pyrene fluorescence quenching. J. Fluoresc. 2013, 23, 193–202. | pl |
dc.description.references | Jabłońska-Trypuć, A.; Wydro, U.; Wołejko, E.; Świderski, G.; Lewandowski, W. Biological Activity of New Cichoric Acid-Metal ´Complexes in Bacterial Strains, Yeast-Like Fungi, and Human Cell Cultures In Vitro. Nutrients 2020, 12, 154. | pl |
dc.description.references | Kalinowska, M.; Sienkiewicz-Gromiuk, J.; Swiderski, G.; Pietryczuk, A.; Cudowski, A.; Lewandowski, W. Zn(II) Complex of Plant ´Phenolic Chlorogenic Acid: Antioxidant, Antimicrobial and Structural Studies. Materials 2020, 13, 3745. | pl |
dc.description.references | Lewandowski, W.; Lewandowska, H.; Golonko, A.; Świderski, G.; ´Świsłocka, R.; Kalinowska, M. Correlations between molecular ´structure and biological activity in “logical series” of dietary chromone derivatives. PLoS ONE 2020, 15, e0229477. | pl |
dc.description.references | Kalinowska, M.; Gołębiewska, E.; Mazur, L.; Lewandowska, H.; Pruszyński, M.; Świderski, G.; Wyrwas, M.; Pawluczuk, N.; ´Lewandowski, W. Crystal Structure, Spectroscopic Characterization, Antioxidant and Cytotoxic Activity of New Mg(II) and Mn(II)/Na(I) Complexes of Isoferulic Acid. Materials 2021, 14, 3236. | pl |
dc.description.references | Arena, K.; Brancato, G.; Cacciola, F.; Crea, F.; Cataldo, S.; De Stefano, C.; Gama, S.; Lando, G.; Milea, D.; Mondello, L.; et al. 8-Hydroxyquinoline-2-Carboxylic Acid as Possible Molybdophore: A Multi-Technique Approach to Define Its Chemical Speciation, Coordination and Sequestering Ability in Aqueous Solution. Biomolecules 2020, 10, 930. | pl |
dc.description.references | Cigala, R.M.; Cordaro, M.; Crea, F.; De Stefano, C.; Fracassetti, V.; Marchesi, M.; Milea, D.; Sammartano, S. Acid–Base Properties and Alkali and Alkaline Earth Metal Complex Formation in Aqueous Solution of Diethylenetriamine-N,N,N0,N”,N”-pentakis(methylenephosphonic acid) Obtained by an Efficient Synthetic Procedure. Ind. Eng. Chem. Res. 2014, 53, 9544–9553. | pl |
dc.description.references | Palma, E.; Mendes, F.; Morais, G.R.; Rodrigues, I.; Santos, I.C.; Campello, M.P.C.; Raposinho, P.; Correia, I.; Gama, S.; Belo, D.; et al. Biophysical characterization and antineoplastic activity of new bis(thiosemicarbazonato) Cu(II) complexes. J. Inorg. Biochem. 2017, 167, 68–79. | pl |
dc.description.references | Gabano, E.; Gama, S.; Mendes, F.; Gariboldi, M.B.; Monti, E.; Bombard, S.; Bianco, S.; Ravera, M. Study of the synthesis, antiproliferative properties, and interaction with DNA and polynucleotides of cisplatin-like Pt(II) complexes containing carcinogenic polyaromatic amines. J. Biol. Inorg. Chem. 2013, 18, 791–801. | pl |
dc.description.references | Kalinowska, M.; Piekut, J.; Bruss, A.; Follet, C.; Sienkiewicz-Gromiuk, J.; Świsłocka, R.; Rzączyńska, Z.; Lewandowski, W. ´Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV/VIS), thermogravimetric and antimicrobial studies of Ca(II), Mn(II), Cu(II), Zn(II) and Cd(II) complexes of ferulic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 122, 631–638. | pl |
dc.description.references | Świderski, G.; Łyszczek, R.; Wojtulewski, S.; Kalinowska, M.; Świsłocka, R.; Lewandowski, W. Comparison of structural, ´spectroscopic, theoretical and thermal properties of metal complexes (Zn(II), Mn(II), Cu(II), Ni(II) and Co(II)) of pyridazine-3- carboxylic acid and pyridazine-4-carboxylic acids. Inorg. Chim. Acta 2020, 512, 119865. | pl |
dc.description.references | Varsányi, G.; Kovner, M.A.; Láng, L. Assignments for Vibrational Spectra of 700 Benzene Derivatives; Akademiai Kiadó: Budapest, Hungary, 1973. | pl |
dc.description.references | Lewandowski, W.; Fuks, L.; Kalinowska, M.; Koczoń, P. The influence of selected metals on the electronic system of biologically important ligands. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2003, 59, 3411–3420. | pl |
dc.description.references | Lewandowski, W.; Kalinowska, M.; Lewandowska, H. The influence of metals on the electronic system of biologically important ligands. Spectroscopic study of benzoates, salicylates, nicotinates and isoorotates. J. Inorg. Biochem. 2005, 99, 1407–1423. | pl |
dc.description.references | Nakamoto, K.; McCarthy, P.J. Spectroscopy and Structure of Metal Chelate Compounds; Wiley: New York, NY, USA, 1968. | pl |
dc.description.references | Kalinowska, M.; Świsłocka, R.; Lewandowski, W. The spectroscopic (FT-IR, FT-Raman and ´ 1H, 13C NMR) and theoretical studies of cinnamic acid and alkali metal cinnamates. J. Mol. Struct. 2007, 834, 572–580. | pl |
dc.description.references | Świslocka, R.; Kowczyk-Sadowy, M.; Kalinowska, M.; Lewandowski, W. Spectroscopic (FT-IR, FT-Raman, 1H and 13C NMR) and theoretical studies of p-coumaric acid and alkali metal p-coumarates. J. Spectrosc. 2012, 27, 546146. | pl |
dc.description.references | Lin, X.; Ning, E.; Li, X.; Li, Q. Construction of mixed carboxylate and pyrogallate building units for luminescent metal–organic frameworks. Chin. Chem. Lett. 2020, 31, 813–817. | pl |
dc.description.references | Dan, M.; Cheetham, A.K.; Rao, C.N.R. Diverse Structures and Dimensionalities in Hybrid Frameworks of Strontium and Lanthanum with Isomeric Dihydroxybenzoates. Inorg. Chem. 2006, 45, 8227–8238. | pl |
dc.description.references | Bizri, Y.; Cromer, M.; Lamy, I.; Scharff, J.P. Complexation dans les systèmes organo-minéraux modèles (acide cafféique et tiron) et naturels (substances humiques). Analusis 1985, 13, 128–133. | pl |
dc.description.references | Gans, P.; Sabatini, A.; Vacca, A. HypSpec. Available online: http://www.hyperquad.co.uk (accessed on 15 October 2021). | pl |
dc.description.references | Frassineti, C.; Ghelli, S.; Gans, P.; Sabatini, A.; Moruzzi, M.S.; Vacca, A. Nuclear Magnetic Resonance as a Tool for Determining Protonation Constants of Natural Polyprotic Bases in Solution. Anal. Biochem. 1995, 231, 374–382. | pl |
dc.description.references | Crea, F.; Milea, D.; Sammartano, S. Enhancement of hydrolysis through the formation of mixed hetero-metal species. Talanta 2005, 65, 229–238. | pl |
dc.description.references | Crea, F.; Milea, D.; Sammartano, S. Enhancement of Hydrolysis through the Formation of Mixed Hetero-Metal Species: Dioxouranium(VI)–Cadmium(II) Mixtures. Ann. Chim. 2005, 95, 767–778. | pl |
dc.description.references | Ekberg, C.; Brown, P.L. Hydrolysis of Metal Ions; Wiley-VCH, Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016. | pl |
dc.description.references | Klungness, G.D.; Byrne, R.H. Comparative hydrolysis behavior of the rare earths and yttrium: The influence of temperature and ionic strength. Polyhedron 2000, 19, 99–107. | pl |
dc.description.references | Kiss, T.; Nagy, G.; Pécsi, M.; Kozlowski, H.; Micera, G.; Erre, L.S. Complexes of 3,4-dihydroxyphenyl derivatives—X. Copper(II) complexes of chlorogenic acid and related compounds. Polyhedron 1989, 8, 2345–2349. | pl |
dc.description.references | Sahoo, S.; Bera, R.K.; Baral, M.; Kanungo, B.K.A.C.S. Spectroscopic and Potentiometric Study of 2,3-Dihydroxybenzoic Acid and its Complexation with La(III) Ion. Acta Chim. Slov. 2008, 55, 243–247. | pl |
dc.description.references | Cocks, S.; Under, P.W.; Voyé, A. Potentiometric Investigations of Equilibria Between Caffeic Acid and Manganese(II), Cobalt(II), Nickel(II) and Cadmium(II) Ions in Aqueous Solution. J. Coord. Chem. 1992, 25, 211–220. | pl |
dc.description.references | Adams, M.L.; O’Sullivan, B.; Downard, A.J.; Powell, K.J. Stability Constants for Aluminum(III) Complexes with the 1,2-Dihydroxyaryl Ligands Caffeic Acid, Chlorogenic Acid, DHB, and DASA in Aqueous Solution. J. Chem. Eng. Data 2002, 47, 289–296. | pl |
dc.description.references | Beneduci, A.; Furia, E.; Russo, N.; Marino, T. Complexation behaviour of caffeic, ferulic and p-coumaric acids towards aluminium cations: A combined experimental and theoretical approach. New J. Chem. 2017, 41, 5182–5190. | pl |
dc.description.references | Malacaria, L.; Corrente, G.A.; Beneduci, A.; Furia, E.; Marino, T.; Mazzone, G. A Review on Coordination Properties of Al(III) and Fe(III) toward Natural Antioxidant Molecules: Experimental and Theoretical Insights. Molecules 2021, 26, 2603. | pl |
dc.description.references | Zhu, D.-H.; Kappel, M.J.; Raymond, K.N. Coordination chemistry of lanthanide catecholates. Inorg. Chim. Acta 1988, 147, 115–121. | pl |
dc.description.references | Taha, M.; Khan, I.; Coutinho, J.A. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes. J. Inorg. Biochem. 2016, 157, 25–33. | pl |
dc.description.references | Gama, S.; Frontauria, M.; Ueberschaar, N.; Brancato, G.; Milea, D.; Sammartano, S.; Plass, W. Thermodynamic study on 8-hydroxyquinoline-2-carboxylic acid as a chelating agent for iron found in the gut of Noctuid larvae. New J. Chem. 2018, 42, 8062–8073. | pl |
dc.description.references | Gama, S.; Hermenau, R.; Frontauria, M.; Milea, D.; Sammartano, S.; Hertweck, C.; Plass, W. Iron Coordination Properties of Gramibactin as Model for the New Class of Diazeniumdiolate Based Siderophores. Chem. Eur. J. 2021, 27, 2724–2733. | pl |
dc.description.references | Bazzicalupi, C.; Bianchi, A.; Giorgi, C.; Clares, M.P.; García-España, E. Addressing selectivity criteria in binding equilibria. Coord.Chem. Rev. 2012, 256, 13–27. | pl |
dc.description.references | Crea, F.; De Stefano, C.; Foti, C.; Milea, D.; Sammartano, S. Chelating agents for the sequestration of mercury(II) and monomethyl mercury(II). Curr. Med. Chem. 2014, 21, 3819–3836. | pl |
dc.description.references | Harris, W.R.; Carrano, C.J.; Cooper, S.R.; Sofen, S.R.; Avdeef, A.E.; McArdle, J.V.; Raymond, K.N. Coordination chemistry of microbial iron transport compounds. 19. Stability constants and electrochemical behavior of ferric enterobactin and model complexes. J. Am. Chem. Soc. 1979, 101, 6097–6104. | pl |
dc.description.references | Overton, E. Studien über d. Narkose Zugleich ein Beitrag zur Allgemeinen Pharmakologie; Gustav Fisher: Jena, Germany, 1901; p. 195. | pl |
dc.description.references | Tweedy, B.G. Plant Extracts with Metal Ions as Potential Antimicrobial Agents. Phytopatology 1964, 55, 910–918. | pl |
dc.description.references | Zong, G.-C.; Huo, J.-X.; Ren, N.; Zhang, J.-J.; Qi, X.-X.; Gao, J.; Geng, L.-N.; Wang, S.-P.; Shi, S.-K. Preparation, characterization and properties of four new trivalent lanthanide complexes constructed using 2-bromine-5-methoxybenzoic acid and 1,10-phenanthroline. Dalton Trans. 2015, 44, 14877–14886. | pl |
dc.description.references | Mohanan, K.; Devi, S.N. Synthesis, characterization, thermal stability, reactivity, and antimicrobial properties of some novel lanthanide(III) complexes of 2-(N-salicylideneamino)-3-carboxyethyl-4,5,6,7-tetrahydrobenzo[b]thiophene. Russ. J. Coord. Chem. 2006, 32, 600–609. | pl |
dc.description.references | Ivanova, E.; Mitik-Dineva, N.; Mocanasu, R.; Murphy, S.; Wang, J.; Riessen, G.v.; Crawford, R. Vibrio fischeri and Escherichia coli adhesion tendencies towards photolithographically modified nanosmooth poly (tert-butyl methacrylate) polymer surfaces. Nanotechnol. Sci. Appl. 2008, 1, 33–44. | pl |
dc.description.references | Schott, H.; Young, C.Y. Electrokinetic Studies of Bacteria III: Effect of Polyvalent Metal Ions on Electrophoretic Mobility and Growth of Streptococcus faecalis. J. Pharm. Sci. 1973, 62, 1797–1801. | pl |
dc.description.references | Collins, Y.E.; Stotzky, G. Heavy metals alter the electrokinetic properties of bacteria, yeasts, and clay minerals. Appl. Environ. Microbiol. 1992, 58, 1592–1600. | pl |
dc.description.references | Spiegel, M.; Kapusta, K.; Kołodziejczyk, W.; Saloni, J.; Zbikowska, B.; Hill, G.A.; Sroka, Z. Antioxidant Activity of Selected ˙Phenolic Acids–Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. Molecules 2020, 25, 3088. | pl |
dc.description.references | Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020, 10, 2611. | pl |
dc.description.references | Santos-Sánchez, F.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant compounds and their antioxidant mechanism in antioxidants. In Antioxidants; Shalaby, E., Ed.; IntechOpen: London, UK, 2019; pp. 1–28. | pl |
dc.description.references | Litwinienko, G.; Ingold, K.U. Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J. Org. Chem. 2004, 69, 5888–5896. | pl |
dc.description.references | Krężel, A.; Bal, W. A formula for correlating pKa values determined in D 2O and H2O. J. Inorg. Biochem. 2004, 98, 161–166. | pl |
dc.description.references | De Stefano, C.; Sammartano, S.; Mineo, P.; Rigano, C. Computer tools for the speciation of natural fluids. In Marine Chemistry—An Environmental Analytical Chemistry Approach; Gianguzza, A., Pelizzetti, E., Sammartano, S., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1997; pp. 71–83. | pl |
dc.description.references | Alderighi, L.; Gans, P.; Ienco, A.; Peters, D.; Sabatini, A.; Vacca, A. Hyperquad simulation and speciation (HySS): A utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 1999, 184, 311–318. | pl |
dc.description.references | Kruszewski, M.; Kusaczuk, M.; Kotyńska, J.; Gál, M.; Krętowski, R.; Cechowska-Pasko, M.; Naumowicz, M. The effect of quercetin on the electrical properties of model lipid membranes and human glioblastoma cells. Bioelectrochemistry 2018, 124, 133–141. | pl |
dc.description.references | Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. | pl |
dc.description.references | Diplock, A.T.; Symons, M.C.R.; Rice-Evans, C.A. Techniques in Free Radical Research; Elsevier Science: Amsterdam, The Netherlands, 1991; Volume 22. | pl |
dc.description.references | Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem. 2004, 52, 7970–7981. | pl |
dc.description.references | Kikuzaki, H.; Nakatani, N. Antioxidant Effects of Some Ginger Constituents. J. Food Sci. 1993, 58, 1407–1410. | pl |
dc.identifier.eissn | 1422-0067 | - |
dc.description.volume | 23 | pl |
dc.description.issue | 2 | pl |
dc.description.firstpage | 1 | pl |
dc.description.lastpage | 29 | pl |
dc.identifier.citation2 | International Journal of Molecular Sciences | pl |
dc.identifier.orcid | 0000-0001-9307-8146 | - |
dc.identifier.orcid | 0000-0002-9689-7435 | - |
dc.identifier.orcid | 0000-0002-0839-9891 | - |
dc.identifier.orcid | 0000-0003-4442-6348 | - |
dc.identifier.orcid | 0000-0001-7034-9126 | - |
dc.identifier.orcid | 0000-0002-5039-9537 | - |
dc.identifier.orcid | 0000-0001-5229-1805 | - |
dc.identifier.orcid | 0000-0002-4886-0232 | - |
dc.identifier.orcid | 0000-0001-8783-454X | - |
dc.identifier.orcid | 0000-0002-8820-5216 | - |
dc.identifier.orcid | 0000-0002-2520-2827 | - |
dc.identifier.orcid | 0000-0003-1188-8837 | - |
dc.identifier.orcid | brakorcid | - |
dc.identifier.orcid | 0000-0002-2576-4029 | - |
Występuje w kolekcji(ach): | Artykuły naukowe (WChem) |
Pliki w tej pozycji:
Plik | Opis | Rozmiar | Format | |
---|---|---|---|---|
Z_Arciszewska_S_Gama_M_Kalinowska_B_Godlewska_Zylkiewicz_at_all_Caffeic_AcidEu(III)_Complexes.pdf | 3,88 MB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL