REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/13661
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorPąk, Karol-
dc.date.accessioned2022-07-22T11:13:09Z-
dc.date.available2022-07-22T11:13:09Z-
dc.date.issued2021-
dc.identifier.citationFormalized Mathematics, Volume 29, Issue 4, Pages 221-228pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/13661-
dc.description.abstractThe main purpose of formalization is to prove that the set of prime numbers is diophantine, i.e., is representable by a polynomial formula. We formalize this problem, using the Mizar system [1], [2], in two independent ways, proving the existence of a polynomial without formulating it explicitly as well as with its indication. First, we reuse nearly all the techniques invented to prove the MRDPtheorem [11]. Applying a trick with Mizar schemes that go beyond first-order logic we give a short sophisticated proof for the existence of such a polynomial but without formulating it explicitly. Then we formulate the polynomial proposed in [6] that has 26 variables in the Mizar language as follows (w·z+h+j−q)²+((g·k+g+k)·(h+j)+h−z)²+(2 · k³·(2·k+2)·(n + 1)²+1−f²)²+(p+q+z + 2·n−e)² + (e³·(e+ 2)·(a + 1)² + 1−o²)² + (x² −(a² −´1)·y² −1)² +(16 ·(a² − 1)· r²· y²· y² + 1 − u²)² + (((a + u²·(u² − a))² − 1)·(n + 4 · d · y)² +1 − (x + c · u)²)² +(m² − (a² −´1) · l² − 1)² + (k + i · (a − 1) − l)² + (n + l + v − y)² +(p + l · (a − n − 1) + b · (2 · a · (n + 1) − (n + 1)² − 1) − m)² +(q + y · (a − p − 1) + s · (2 · a · (p + 1) − (p + 1)² − 1) − x)² + (z + p · l · (a − p) +t · (2 · a · p − p² − 1) − p · m)² and we prove that that for any positive integer k so that k + 1 is prime it is necessary and sufficient that there exist other natural variables a-z for which the polynomial equals zero. 26 variables is not the best known result in relation to the set of prime numbers, since any diophantine equation over N can be reduced to one in 13 unknowns [8] or even less [5], [13]. The best currently known result for all prime numbers, where the polynomial is explicitly constructed is 10 [7] or even 7 in the case of Fermat as well as Mersenne prime number [4]. We are currently focusing our formalization efforts in this direction.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectprime numberpl
dc.subjectpolynomial reductionpl
dc.subjectdiophantine equationpl
dc.titlePrime Representing Polynomialpl
dc.typeArticlepl
dc.rights.holder© 2021 University of Białymstokupl
dc.rights.holderCC-BY-SA License ver. 3.0 or laterpl
dc.identifier.doi10.2478/forma-2021-0020-
dc.description.AffiliationInstitute of Computer Science, University of Białystok, Polandpl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-817.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesYuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, and Yasunari Shidama. Gaussian integers. Formalized Mathematics, 21(2):115–125, 2013. doi:10.2478/forma-2013-0013.pl
dc.description.referencesJames P. Jones. Diophantine representation of Mersenne and Fermat primes. Acta Arithmetica, 35:209–221, 1979. doi:10.4064/AA-35-3-209-221.pl
dc.description.referencesJames P. Jones. Universal diophantine equation. Journal of Symbolic Logic, 47(4):549–571, 1982.pl
dc.description.referencesJames P. Jones, Sato Daihachiro, Hideo Wada, and Douglas Wiens. Diophantine representation of the set of prime numbers. The American Mathematical Monthly, 83(6):449–464, 1976.pl
dc.description.referencesYuri Matiyasevich. Primes are nonnegative values of a polynomial in 10 variables. Journal of Soviet Mathematics, 15:33–44, 1981. doi:10.1007/BF01404106.pl
dc.description.referencesYuri Matiyasevich and Julia Robinson. Reduction of an arbitrary diophantine equation to one in 13 unknowns. Acta Arithmetica, 27:521–553, 1975.pl
dc.description.referencesKarol Pąk. The Matiyasevich theorem. Preliminaries. Formalized Mathematics, 25(4):315–322, 2017. doi:10.1515/forma-2017-0029.pl
dc.description.referencesKarol Pąk. Diophantine sets. Part II. Formalized Mathematics, 27(2):197–208, 2019. doi:10.2478/forma-2019-0019.pl
dc.description.referencesKarol Pąk. Formalization of the MRDP theorem in the Mizar system. Formalized Mathematics, 27(2):209–221, 2019. doi:10.2478/forma-2019-0020.pl
dc.description.referencesChristoph Schwarzweller. Proth numbers. Formalized Mathematics, 22(2):111–118, 2014. doi:10.2478/forma-2014-0013.pl
dc.description.referencesZhi-Wei Sun. Further results on Hilbert’s Tenth Problem. Science China Mathematics, 64:281–306, 2021. doi:10.1007/s11425-020-1813-5.pl
dc.description.referencesRafał Ziobro. Prime factorization of sums and differences of two like powers. Formalized Mathematics, 24(3):187–198, 2016. doi:10.1515/forma-2016-0015.pl
dc.identifier.eissn1898-9934-
dc.description.volume29pl
dc.description.issue4pl
dc.description.firstpage221pl
dc.description.lastpage228pl
dc.identifier.citation2Formalized Mathematicspl
dc.identifier.orcid0000-0002-7099-1669-
Występuje w kolekcji(ach):Artykuły naukowe (WInf)
Formalized Mathematics, 2021, Volume 29, Issue 4

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
10.2478_forma-2021-0020.pdf285,1 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons