REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/5558
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorCoghetto, Roland-
dc.date.accessioned2017-06-02T11:55:28Z-
dc.date.available2017-06-02T11:55:28Z-
dc.date.issued2016-
dc.identifier.citationFormalized Mathematics, Volume 24, Issue 4, pp. 239-252pl
dc.identifier.issn1426-2630pl
dc.identifier.issn1898-9934pl
dc.identifier.urihttp://hdl.handle.net/11320/5558-
dc.description.abstractThe real projective plane has been formalized in Isabelle/HOL by Timothy Makarios [13] and in Coq by Nicolas Magaud, Julien Narboux and Pascal Schreck [12].Some definitions on the real projective spaces were introduced early in the Mizar Mathematical Library by Wojciech Leonczuk [9], Krzysztof Prazmowski [10] and by Wojciech Skaba [18].In this article, we check with the Mizar system [4], some properties on the determinants and the Grassmann-Plücker relation in rank 3 [2], [1], [7], [16], [17].Then we show that the projective space induced (in the sense defined in [9]) by ℝ3 is a projective plane (in the sense defined in [10]).Finally, in the real projective plane, we define the homography induced by a 3-by-3 invertible matrix and we show that the images of 3 collinear points are themselves collinear.-
dc.language.isoen-
dc.publisherDe Gruyter Open-
dc.subjectprojectivity-
dc.subjectprojective transformation-
dc.subjectprojective collineation-
dc.subjectreal projective plane-
dc.subjectGrassmann-Plücker relation-
dc.titleHomography in ℝℙ-
dc.typeArticle-
dc.identifier.doi10.1515/forma-2016-0020-
dc.description.AffiliationRue de la Brasserie 5, 7100 La Louvière, Belgium-
dc.description.referencesSusanne Apel. The geometry of brackets and the area principle. Phd thesis, Technische Universität München, Fakultät für Mathematik, 2014.-
dc.description.referencesSusanne Apel and Jürgen Richter-Gebert. Cancellation patterns in automatic geometric theorem proving. In Automated Deduction in Geometry, pages 1–33. Springer, 2010.-
dc.description.referencesGrzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.-
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.-
dc.description.referencesCzesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.-
dc.description.referencesAgata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.-
dc.description.referencesLaurent Fuchs and Laurent Thery. A formalization of Grassmann-Cayley algebra in Coq and its application to theorem proving in projective geometry. In Automated Deduction in Geometry, pages 51–67. Springer, 2010.-
dc.description.referencesKanchun, Hiroshi Yamazaki, and Yatsuka Nakamura. Cross products and tripple vector products in 3-dimensional Euclidean space. Formalized Mathematics, 11(4):381–383, 2003.-
dc.description.referencesWojciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. Formalized Mathematics, 1(4):761–766, 1990.-
dc.description.referencesWojciech Leończuk and Krzysztof Prażmowski. Projective spaces – part I. Formalized Mathematics, 1(4):767–776, 1990.-
dc.description.referencesXiquan Liang, Piqing Zhao, and Ou Bai. Vector functions and their differentiation formulas in 3-dimensional Euclidean spaces. Formalized Mathematics, 18(1):1–10, 2010. doi:10.2478/v10037-010-0001-2.-
dc.description.referencesNicolas Magaud, Julien Narboux, and Pascal Schreck. Formalizing projective plane geometry in Coq. In Automated Deduction in Geometry, pages 141–162. Springer, 2008.-
dc.description.referencesTimothy James McKenzie Makarios. A mechanical verification of the independence of Tarski’s Euclidean Axiom. Victoria University of Wellington, New Zealand, 2012. Master’s thesis.-
dc.description.referencesKarol Pąk. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199–211, 2007. doi:10.2478/v10037-007-0024-5.-
dc.description.referencesKarol Pąk. Linear transformations of Euclidean topological spaces. Formalized Mathematics, 19(2):103–108, 2011. doi:10.2478/v10037-011-0016-3.-
dc.description.referencesJürgen Richter-Gebert. Mechanical theorem proving in projective geometry. Annals of Mathematics and Artificial Intelligence, 13(1-2):139–172, 1995.-
dc.description.referencesJürgen Richter-Gebert. Perspectives on projective geometry: a guided tour through real and complex geometry. Springer Science & Business Media, 2011.-
dc.description.referencesWojciech Skaba. The collinearity structure. Formalized Mathematics, 1(4):657–659, 1990.-
dc.description.referencesWojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.-
Występuje w kolekcji(ach):Formalized Mathematics, 2016, Volume 24, Issue 4

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
forma-2016-0020.pdf275,26 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons