Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/5496
Tytuł: | Cousin’s Lemma |
Autorzy: | Coghetto, Roland |
Słowa kluczowe: | Cousin’s lemma Cousin’s theorem nested intervals theorem |
Data wydania: | 2016 |
Data dodania: | 16-maj-2017 |
Wydawca: | De Gruyter Open |
Źródło: | Formalized Mathematics, Volume 24, Issue 2, pp. 107–120 |
Abstrakt: | We formalize, in two different ways, that “the n-dimensional Euclidean metric space is a complete metric space” (version 1. with the results obtained in [13], [26], [25] and version 2., the results obtained in [13], [14], (registrations) [24]).With the Cantor’s theorem - in complete metric space (proof by Karol Pąk in [22]), we formalize “The Nested Intervals Theorem in 1-dimensional Euclidean metric space”.Pierre Cousin’s proof in 1892 [18] the lemma, published in 1895 [9] states that: “Soit, sur le plan YOX, une aire connexe S limitée par un contour fermé simple ou complexe; on suppose qu’à chaque point de S ou de son périmètre correspond un cercle, de rayon non nul, ayant ce point pour centre : il est alors toujours possible de subdiviser S en régions, en nombre fini et assez petites pour que chacune d’elles soit complétement intérieure au cercle correspondant à un point convenablement choisi dans S ou sur son périmètre.” (In the plane YOX let S be a connected area bounded by a closed contour, simple or complex; one supposes that at each point of S or its perimeter there is a circle, of non-zero radius, having this point as its centre; it is then always possible to subdivide S into regions, finite in number and sufficiently small for each one of them to be entirely inside a circle corresponding to a suitably chosen point in S or on its perimeter) [23].Cousin’s Lemma, used in Henstock and Kurzweil integral [29] (generalized Riemann integral), state that: “for any gauge δ, there exists at least one δ-fine tagged partition”. In the last section, we formalize this theorem. We use the suggestions given to the Cousin’s Theorem p.11 in [5] and with notations: [4], [29], [19], [28] and [12]. |
Afiliacja: | Coghetto Roland - Rue de la Brasserie 5, 7100 La Louvière, Belgium |
URI: | http://hdl.handle.net/11320/5496 |
DOI: | 10.1515/forma-2016-0009 |
ISSN: | 1426-2630 1898-9934 |
Typ Dokumentu: | Article |
Występuje w kolekcji(ach): | Formalized Mathematics, 2016, Volume 24, Issue 2 |
Pliki w tej pozycji:
Plik | Opis | Rozmiar | Format | |
---|---|---|---|---|
forma-2016-0009.pdf | 295,78 kB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL