REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/3679
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorGrabowski, Adam-
dc.date.accessioned2015-12-09T20:39:34Z-
dc.date.available2015-12-09T20:39:34Z-
dc.date.issued2013-
dc.identifier.citationFormalized Mathematics, Volume 21, Issue 2, 2013, Pages 103-113-
dc.identifier.issn1426-2630-
dc.identifier.issn1898-9934-
dc.identifier.urihttp://hdl.handle.net/11320/3679-
dc.description.abstractIn the article the formal characterization of triangular numbers (famous from [15] and words “EYPHKA! num = Δ+Δ+Δ”) [17] is given. Our primary aim was to formalize one of the items (#42) from Wiedijk’s Top 100 Mathematical Theorems list [33], namely that the sequence of sums of reciprocals of triangular numbers converges to 2. This Mizar representation was written in 2007. As the Mizar language evolved and attributes with arguments were implemented, we decided to extend these lines and we characterized polygonal numbers. We formalized centered polygonal numbers, the connection between triangular and square numbers, and also some equalities involving Mersenne primes and perfect numbers. We gave also explicit formula to obtain from the polygonal number its ordinal index. Also selected congruences modulo 10 were enumerated. Our work basically covers the Wikipedia item for triangular numbers and the Online Encyclopedia of Integer Sequences (http://oeis.org/A000217). An interesting related result [16] could be the proof of Lagrange’s four-square theorem or Fermat’s polygonal number theorem [32].-
dc.language.isoen-
dc.publisherDe Gruyter Open-
dc.subjecttriangular number-
dc.subjectpolygonal number-
dc.subjectreciprocals of triangular numbers-
dc.titlePolygonal Numbers-
dc.typeArticle-
dc.identifier.doi10.2478/forma-2013-0012-
dc.description.AffiliationInstitute of Informatics University of Białystok Akademicka 2, 15-267 Białystok Poland-
dc.description.referencesKenichi Arai and Hiroyuki Okazaki. Properties of primes and multiplicative group of a field. Formalized Mathematics, 17(2):151-155, 2009. doi:10.2478/v10037-009-0017-7.-
dc.description.referencesGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.-
dc.description.referencesGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.-
dc.description.referencesGrzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.-
dc.description.referencesCzesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.-
dc.description.referencesCzesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.-
dc.description.referencesCzesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.-
dc.description.referencesCzesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.-
dc.description.referencesCzesław Bylinski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.-
dc.description.referencesCzesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.-
dc.description.referencesAgata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.-
dc.description.referencesYuzhong Ding and Xiquan Liang. Solving roots of polynomial equation of degree 2 and 3 with complex coefficients. Formalized Mathematics, 12(2):85-92, 2004.-
dc.description.referencesYoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin’s test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317-321, 1998.-
dc.description.referencesYuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, and Yasunari Shidama. Operations of points on elliptic curve in projective coordinates. Formalized Mathematics, 20(1):87-95, 2012. doi:10.2478/v10037-012-0012-2.-
dc.description.referencesCarl Friedrich Gauss. Disquisitiones Arithmeticae. Springer, New York, 1986. English translation.-
dc.description.referencesRichard K. Guy. Every number is expressible as a sum of how many polygonal numbers? American Mathematical Monthly, 101:169-172, 1994.-
dc.description.referencesThomas L. Heath. A History of Greek Mathematics: From Thales to Euclid, Vol. I. Courier Dover Publications, 1921.-
dc.description.referencesAndrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.-
dc.description.referencesJarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.-
dc.description.referencesJarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.-
dc.description.referencesRafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.-
dc.description.referencesRafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990.-
dc.description.referencesRobert Milewski. Natural numbers. Formalized Mathematics, 7(1):19-22, 1998.-
dc.description.referencesAdam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265-268, 1997.-
dc.description.referencesKonrad Raczkowski and Andrzej Nedzusiak. Series. Formalized Mathematics, 2(4):449-452, 1991.-
dc.description.referencesMarco Riccardi. The perfect number theorem and Wilson’s theorem. Formalized Mathematics, 17(2):123-128, 2009. doi:10.2478/v10037-009-0013-y.-
dc.description.referencesPiotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.-
dc.description.referencesAndrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.-
dc.description.referencesAndrzej Trybulec and Czesław Bylinski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.-
dc.description.referencesMichał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.-
dc.description.referencesZinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.-
dc.description.referencesAndré Weil. Number Theory. An Approach through History from Hammurapi to Legendre. Birkh¨auser, Boston, Mass., 1983.-
dc.description.referencesFreek Wiedijk. Formalizing 100 theorems.-
dc.description.referencesFreek Wiedijk. Pythagorean triples. Formalized Mathematics, 9(4):809-812, 2001.-
dc.description.referencesEdmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.-
Występuje w kolekcji(ach):Artykuły naukowe (WInf)
Formalized Mathematics, 2013, Volume 21, Issue 2

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
forma-2013-0012.pdf251,25 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons