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Summary. We continue the formal development of rough inclusion func-
tions (RIFs), continuing the research on the formalization of rough sets [15] – a
well-known tool of modelling of incomplete or partially unknown information. In
this article we give the formal characterization of complementary RIFs, following
a paper by Gomolińska [4]. We expand this framework introducing Jaccard index,
Steinhaus generate metric, and Marczewski-Steinhaus metric space [1]. This is
the continuation of [9]; additionally we implement also parts of [2], [3], and the
details of this work can be found in [7].
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0. Introduction

In the paper, continuing our development of rough inclusion functions (RIFs),
we deal with functions complementary to RIFs, and consider distance operators
obtained from such functions.

Quite large part of the Mizar formalization of rough sets [5], [8] was done
by means of the notion of a generalized approximation space understood as a
pair 〈U, ρ〉, where ρ is an indiscernibility relation defined on the universe U .
This reflects the standpoint of Skowron and Stepaniuk [16], based on tolerance
relations instead of equivalence relations (claimed by Pawlak) and further ge-
neralized by Zhu [17], among many others. The framework build in a similar
manner is contained in [10] and [11].
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In the alternative approach, used by Gomolińska [3], approximation spaces
are treated as triples of the form A = (U, I, κ), where U is a non-empty set called
the universe, I : U 7→ ℘U is an uncertainty mapping, and κ : ℘U × ℘U 7→ [0, 1]
is a rough inclusion function. The formalization of uncertainty mappings was
discussed in [13], and the current submission goes further in this direction. Still
however, we can merge our existing approaches via theory merging mechanism
[6], having in mind that we should avoid duplications in the repository of Mizar
texts as much as we can [12].

After filling some gaps in the Mizar Mathematical Library, proving preli-
minary facts needed later, in Sect. 2 we continue the development of functions
complementary to RIFs. Given arbitrary preRIF f (where preRIF stands for a
general mapping from the Cartesian square of the powerset of the universe into
the unit interval, without any additional assumptions), we introduce the Mizar
functor CMap f (see Def. 1), which is of much more general interest. Then we
prove a list of properties of the complementary function on three well-known
RIFs (see [9]): κ£, κ1, and κ2.

Let us briefly recall these three mappings. The first one, standard rough
inclusion function, κ£ based on the ideas of Jan Łukasiewicz [14] is defined as
follows:

κ£(X,Y ) =

{ |X∩Y |
|X| , if X 6= ∅

1, otherwise

Two others are

κ1(X,Y ) =

{ |Y |
|X∪Y | , if X ∪ Y 6= ∅
1, otherwise

and

κ2(X,Y ) =
|(U −X) ∪ Y |

|U |
.

Additionally, we introduce a new type for an object complementary to RIF,
called just co-RIF.

Our testbed for chosen formal approach was Section 4, where full formali-
zation of Proposition 4 from [3] was presented. This was also a step towards
defining three metrics: δL, δ1, and δ2 (Def. 3, 4, and 5, respectively). It is worth
noticing that even if we can deal with fixed rough approximation space, say R,
we give this variable explicitly both in definitions of all three κ functions, and
consequently in corresponding distances δ.

Section 5 contains the definition and very basic properties of Jaccard simi-
larity coefficient Js, widely used in data mining and information retrieval. We
adopt the setting allowing both sets to be empty at the same time (then the
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value of Jaccard index is set to 1). Based on that, in Sect. 6 we define Jaccard
distance (or Marczewski distance) for arbitrary subsets A,B of the universe as
1− Js(A,B).

We met some difficulties in proofs of the triangle inequality for such metrics,
and in order to make it easier for us, we decided to implement some more ideas
from the theory of distances. Namely, we introduced the symmetric difference
metric (Def. 11). Then, using newly defined construction of Steinhaus generate
metric (Def. 10), we can obtain from any distance a new one. The crucial fact was
that the Jaccard distance is precisely Steinhaus generate metric from symmetric
difference distance, hence all ordinary properties of a metric space can be easily
obtained by means of this construction.

In the last section, we show that the value of Marczewski metric on two
subsets A, B of given rough approximation space R is equal to δ1(A,B). As δ1

satisfies the triangle inequality, so does Marczewski metric.

1. Preliminaries

Let us consider finite sets x1, x2. Now we state the propositions:

(1) x1−. x2 = x1 \ x2 + x2 \ x1 .

(2) 2·x1−. x2
x1+x2+x1−. x2

= x1−. x2
x1∪x2

.

Now we state the propositions:

(3) Let us consider sets A, B, C. Then A−. C = (A−. B)−. (B−. C).

(4) Let us consider finite sets A, B. Suppose A ∪ B 6= ∅. Then 1 − A∩B
A∪B

=

A−. B
A∪B

.

(5) Let us consider a finite set R, and subsets X, Y of R. Then X ∪ Y =
X ∩ Y if and only if X = Y.

Observe that there exists a metric space which is finite and non empty.

2. Complementary Rough Inclusion Functions

From now on R denotes a finite approximation space and X, Y, Z denote
subsets of R.

Let R be a finite approximation space and f be a preRIF of R. The functor
CMap f yielding a preRIF of R is defined by

(Def. 1) for every subsets x, y of R, it(x, y) = 1− f(x, y).

Now we state the propositions:
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(6) Let us consider a preRIF f of R. Then CMap CMap f = f .
Proof: Set g = CMap f . For every element x of 2α × 2α, (CMap g)(x) =
f(x), where α is the carrier of R. �

(7) If X 6= ∅, then (CMapκ£(R))(X,Y ) = X\Y
X

.

(8) If X = ∅, then (CMapκ£(R))(X,Y ) = 0.

(9) If X 6= ∅, then (CMapκ£(R))(X,Y ) = κ£(X,Y c).

(10) If X ∪ Y 6= ∅, then (CMapκ1(R))(X,Y ) = X\Y
X∪Y

.

(11) If X ∪ Y = ∅, then (CMapκ1(R))(X,Y ) = 0.

(12) (CMapκ2(R))(X,Y ) = X\Y
ΩR

.

(13) SupposeX 6= ∅. Then κ£(X,Y ) = (CMapκ1(R))(X,Y c)
κ1(Y c,X) = (CMapκ2(R))(X,Y c)

κ2(ΩR,X) .

3. Introducing co-RIFs

Let us consider R. Let f be a preRIF of R. We say that f is co-RIF-like if
and only if

(Def. 2) CMap f is a RIF of R.

Let f be a RIF of R. Let us observe that CMap f is co-RIF-like and there
exists a preRIF of R which is co-RIF-like.

A co-RIF of R is a co-RIF-like preRIF of R.

4. Proposition 6 from [4]

From now on κ denotes a RIF of R. Now we state the propositions:

(14) (CMapκ)(X,Y ) = 0 if and only if X ⊆ Y.
(15) (CMapκ£(R))(X,Y ) = 0 if and only if X ⊆ Y.
Proof: If (CMapκ£(R))(X,Y ) = 0, then X ⊆ Y. �

(16) If Y ⊆ Z, then (CMapκ)(X,Z) ¬ (CMapκ)(X,Y ).

(17) If Y ⊆ Z, then (CMapκ£(R))(X,Z) ¬ (CMapκ£(R))(X,Y ).

(18) (CMapκ2(R))(X,Y ) ¬ (CMapκ1(R))(X,Y ) ¬ (CMapκ£(R))(X,Y ).

(19) Let us consider real numbers a, b, c. If a ¬ b and 0 ¬ c < b and 0 < b,
then a

b ­
a−c
b−c .

(20) If X 6= ∅ and Y = ∅, then (CMapκ1(R))(X,Y ) = 1. The theorem is
a consequence of (10).

(21) If X = ∅ and Y 6= ∅, then (CMapκ1(R))(X,Y ) = 0. The theorem is
a consequence of (10).
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(22) (CMapκ1(R))(X,Y )+(CMapκ1(R))(Y, Z) ­ (CMapκ1(R))(X,Z). The
theorem is a consequence of (14) and (20).

(23) 0 ¬ (CMapκ£(R))(X,Y ) ¬ 1.

(24) 0 ¬ (CMapκ1(R))(X,Y ) + (CMapκ1(R))(Y,X) ¬ 1. The theorem is
a consequence of (11) and (10).

(25) 0 ¬ (CMapκ2(R))(X,Y ) + (CMapκ2(R))(Y,X) ¬ 1. The theorem is
a consequence of (12).

(26) Suppose X = ∅ and Y 6= ∅ or X 6= ∅ and Y = ∅.
Then (CMapκ£(R))(X,Y )+(CMapκ£(R))(Y,X) = (CMapκ1(R))(X,Y )
+(CMapκ1(R))(Y,X) = 1.

Let us consider R. The functors: δL(R), δ1(R), and δ2(R) yielding preRIFs
of R are defined by conditions

(Def. 3) for every subsets x, y of R, δL(R)(x, y) =
(CMapκ£(R))(x,y)+(CMapκ£(R))(y,x)

2 ,

(Def. 4) for every subsets x, y of R, δ1(R)(x, y) =
(CMapκ1(R))(x, y) + (CMapκ1(R))(y, x),

(Def. 5) for every subsets x, y of R, δ2(R)(x, y) =
(CMapκ2(R))(x, y) + (CMapκ2(R))(y, x),

respectively. Now we state the propositions:

(27) (δL(R))(X,Y ) = 0 if and only if X = Y. The theorem is a consequence
of (14).

(28) (δL(R))(X,Y ) = (δL(R))(Y,X).

(29) If X 6= ∅ and Y = ∅ or X = ∅ and Y 6= ∅, then (δL(R))(X,Y ) = 1
2 .

(30) Suppose X 6= ∅ and Y 6= ∅. Then (δL(R))(X,Y ) =
X\Y

X
+ Y \X

Y
2 . The

theorem is a consequence of (7).

(31) (δ1(R))(X,Y ) = X−. Y
X∪Y

. The theorem is a consequence of (10) and (14).

(32) (δ2(R))(X,Y ) = X−. Y
ΩR

. The theorem is a consequence of (12).

(33) (δ1(R))(X,Y ) + (δ1(R))(Y,Z) ­ (δ1(R))(X,Z). The theorem is a conse-
quence of (22).

(34) (δ1(R))(X,Y ) = 0 if and only if X = Y. The theorem is a consequence
of (14).

(35) (δ1(R))(X,Y ) = (δ1(R))(Y,X).

(36) (δ2(R))(X,Y ) = 0 if and only if X = Y. The theorem is a consequence
of (14).

(37) (δ2(R))(X,Y ) = (δ2(R))(Y,X).
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(38) (CMapκ2(R))(X,Y )+(CMapκ2(R))(Y, Z) ­ (CMapκ2(R))(X,Z). The
theorem is a consequence of (12).

(39) (δ2(R))(X,Y ) + (δ2(R))(Y,Z) ­ (δ2(R))(X,Z). The theorem is a conse-
quence of (38).

5. Jaccard Index Measuring Similarity of Sets

LetR be a finite set andA,B be subsets ofR. The functor JaccardIndex(A,B)
yielding an element of [0, 1] is defined by the term

(Def. 6)

 A∩B
A∪B

, if A ∪B 6= ∅,
1, otherwise.

Let us consider a finite set R and subsets A, B of R. Now we state the
propositions:

(40) JaccardIndex(A,B) = 1 if and only if A = B. The theorem is a conse-
quence of (5).

(41) JaccardIndex(A,B) = JaccardIndex(B,A).

6. Marczewski-Steinhaus Metric

Let X be a non empty set and f be a function from X ×X into R. Observe
that f is non-negative yielding if and only if the condition (Def. 7) is satisfied.

(Def. 7) for every elements x, y of X, f(x, y) ­ 0.

One can verify that there exists a function from X × X into R which is
discernible, symmetric, reflexive, and triangle and every function from X × X
into R which is reflexive, symmetric, and triangle is also non-negative yielding.

Now we state the proposition:

(42) Let us consider a non empty set X, a non-negative yielding, discernible,
triangle, reflexive function f from X ×X into R, and elements x, y of X.
If x 6= y, then f(x, y) > 0.

Let R be a finite set. The functor JaccardDistR yielding a function from
2R × 2R into R is defined by

(Def. 8) for every subsets A, B of R, it(A,B) = 1− JaccardIndex(A,B).

Let R be a finite 1-sorted structure. The functor MarczewskiDistanceR yiel-
ding a function from 2(the carrier of R) × 2(the carrier of R) into R is defined by the
term

(Def. 9) JaccardDist ΩR.
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7. Steinhaus Generate Metric

Let X be a non empty set, p be an element of X, and f be a function from
X ×X into R. The functor SteinhausGen(f, p) yielding a function from X ×X
into R is defined by

(Def. 10) for every elements x, y of X, it(x, y) = 2·f(x,y)
f(x,p)+f(y,p)+f(x,y) .

Let f be a non-negative yielding function from X ×X into R. Observe that
SteinhausGen(f, p) is non-negative yielding.

Let f be a non-negative yielding, reflexive function from X×X into R. One
can verify that SteinhausGen(f, p) is reflexive.

Let f be a non-negative yielding, discernible function from X × X into R.
Let us observe that SteinhausGen(f, p) is discernible.

Let f be a non-negative yielding, symmetric function from X × X into R.
Let us note that SteinhausGen(f, p) is symmetric.

Let f be a discernible, symmetric, triangle, reflexive function from X ×X
into R. Let us observe that SteinhausGen(f, p) is triangle.

8. Marczewski-Steinhaus Metric is Generated by Symmetric
Difference Metric

Let X be a finite set. The functor SymmetricDiffDistX yielding a function
from 2X × 2X into R is defined by

(Def. 11) for every subsets x, y of X, it(x, y) = x−. y .

One can check that SymmetricDiffDistX is reflexive, discernible, symmetric,
and triangle.

The functor SymDifMetrSpaceX yielding a metric structure is defined by
the term

(Def. 12) 〈2X , SymmetricDiffDistX〉.
One can verify that SymDifMetrSpaceX is non empty and SymDifMetrSpace
X is reflexive, discernible, symmetric, and triangle.
Now we state the propositions:

(43) Let us consider a finite set R, and subsets A, B of R.

Then (JaccardDistR)(A,B) = A−. B
A∪B

. The theorem is a consequence of

(4).

(44) Let us consider a finite set X.
Then JaccardDistX = SteinhausGen(SymmetricDiffDistX, ∅X). The the-
orem is a consequence of (43) and (2).
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9. Steinhaus Metric Spaces

Let M be a finite, non empty metric space. One can check that the distance
of M is symmetric, reflexive, discernible, and triangle.

Let M be a finite, non empty metric structure and p be an element of M .
The functor SteinhausMetrSpace(M,p) yielding a metric structure is defined by
the term

(Def. 13) 〈the carrier of M,SteinhausGen((the distance of M), p)〉.
Let M be a metric structure. We say that M is with nonnegative distance

if and only if

(Def. 14) the distance of M is non-negative yielding.

Let A be a finite, non empty set. Note that the discrete metric of A is finite,
non empty, and non-negative yielding and there exists a metric space which is
finite, non empty, and with nonnegative distance.

Let M be a finite, non empty, with nonnegative distance metric structure
and p be an element of M . Let us observe that SteinhausMetrSpace(M,p) is
with nonnegative distance.

Let M be a finite, non empty, with nonnegative distance, discernible metric
structure. Observe that SteinhausMetrSpace(M,p) is discernible.

Let M be a finite, non empty, with nonnegative distance, reflexive metric
structure. Let us note that SteinhausMetrSpace(M,p) is reflexive.

Let M be a finite, non empty, with nonnegative distance, symmetric metric
structure. Note that SteinhausMetrSpace(M,p) is symmetric.

Let M be a finite, non empty, discernible, symmetric, reflexive, triangle
metric structure. Let us observe that SteinhausMetrSpace(M,p) is triangle.

Let R be a finite 1-sorted structure. Observe that MarczewskiDistanceR is
reflexive, discernible, and symmetric.

Now we state the proposition:

(45) Let us consider a finite approximation space R, and subsets A, B of
R. Then (MarczewskiDistanceR)(A,B) = (δ1(R))(A,B). The theorem is
a consequence of (43) and (31).

Let R be a finite 1-sorted structure. Note that MarczewskiDistanceR is
triangle.
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