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Reconstruction of the One-Dimensional
Lebesgue Measure
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Summary. In the Mizar system ([1], [2]), Józef Białas has already given
the one-dimensional Lebesgue measure [4]. However, the measure introduced by
Białas limited the outer measure to a field with finite additivity. So, although it
satisfies the nature of the measure, it cannot specify the length of measurable
sets and also it cannot determine what kind of set is a measurable set. From the
above, the authors first determined the length of the interval by the outer measu-
re. Specifically, we used the compactness of the real space. Next, we constructed
the pre-measure by limiting the outer measure to a semialgebra of intervals. Fur-
thermore, by repeating the extension of the previous measure, we reconstructed
the one-dimensional Lebesgue measure [7], [3].
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1. Properties of Intervals

Now we state the propositions:

(1) Let us consider non empty intervals A, B. Suppose A is open interval
and B is open interval and A ∪B is an interval. Then

(i) A ∪B is open interval, and

(ii) A meets B, and

(iii) inf A < supB or inf B < supA.
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(2) Let us consider open interval subsets A, B of R. If A meets B, then
A ∪ B is an open interval subset of R. The theorem is a consequence of
(1).

(3) Let us consider an interval A, and open interval subsets B, C of R. If
A ⊆ B ∪ C and A meets B and A meets C, then B meets C.

Let us consider non empty sets A, B and extended real numbers p, q, r, s.
Now we state the propositions:

(4) If A = [p, q] and B = [r, s] and A misses B, then q < r or s < p.

(5) If A = [p, q] and B = [r, s[ and A misses B, then q < r or s ¬ p.
(6) If A = [p, q] and B = ]r, s] and A misses B, then q ¬ r or s < p.

(7) If A = [p, q] and B = ]r, s[ and A misses B, then q ¬ r or s ¬ p.
(8) If A = [p, q[ and B = [r, s[ and A misses B, then q ¬ r or s ¬ p.
(9) If A = [p, q[ and B = ]r, s] and A misses B, then q ¬ r or s < p.

(10) If A = [p, q[ and B = ]r, s[ and A misses B, then q ¬ r or s ¬ p.
(11) If A = ]p, q] and B = ]r, s] and A misses B, then q ¬ r or s ¬ p.
(12) If A = ]p, q] and B = ]r, s[ and A misses B, then q ¬ r or s ¬ p.
(13) If A = ]p, q[ and B = ]r, s[ and A misses B, then q ¬ r or s ¬ p.
(14) Let us consider non empty intervals A, B, and extended real numbers p,

q, r, s. Suppose A = [p, q] and B = [r, s] and A misses B. Then A ∪ B is
not an interval. The theorem is a consequence of (4).

Let us consider non empty intervals A, B and extended real numbers p, q,
r, s. Now we state the propositions:

(15) If A = [p, q] and B = [r, s[ and A misses B and A ∪ B is an interval,
then p = s and A ∪B = [r, q]. The theorem is a consequence of (5).

(16) If A = [p, q] and B = ]r, s] and A misses B and A ∪ B is an interval,
then q = r and A ∪B = [p, s]. The theorem is a consequence of (6).

(17) Suppose A = [p, q] and B = ]r, s[ and A misses B and A∪B is an interval.
Then

(i) p = s and A ∪B = ]r, q], or

(ii) q = r and A ∪B = [p, s[.

The theorem is a consequence of (7).

(18) Suppose A = [p, q[ and B = [r, s[ and A misses B and A∪B is an interval.
Then

(i) p = s and A ∪B = [r, q[, or

(ii) q = r and A ∪B = [p, s[.

The theorem is a consequence of (8).
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(19) Let us consider non empty intervals A, B, and extended real numbers p,
q, r, s. Suppose A = [p, q[ and B = ]r, s] and A misses B. Then A ∪ B is
not an interval. The theorem is a consequence of (9).

Let us consider non empty intervals A, B and extended real numbers p, q,
r, s. Now we state the propositions:

(20) Suppose A = [p, q[ and B = ]r, s[ and A misses B and A∪B is an interval.
Then

(i) p = s, and

(ii) A ∪B = ]r, q[.

The theorem is a consequence of (10).

(21) Suppose A = ]p, q] and B = ]r, s] and A misses B and A∪B is an interval.
Then

(i) p = s and A ∪B = ]r, q], or

(ii) q = r and A ∪B = ]p, s].

The theorem is a consequence of (11).

(22) Suppose A = ]p, q] and B = ]r, s[ and A misses B and A∪B is an interval.
Then

(i) q = r, and

(ii) A ∪B = ]p, s[.

The theorem is a consequence of (12).

(23) Let us consider non empty intervals A, B, and extended real numbers p,
q, r, s. Suppose A = ]p, q[ and B = ]r, s[ and A misses B. Then A ∪ B is
not an interval. The theorem is a consequence of (13).

(24) Let us consider real numbers a, b, and a subset I of R1. If I = [a, b],
then I is compact.

2. Tools for Extended Real Sequences

Let f be a finite sequence of elements of R. The functor maxp f yielding
a natural number is defined by

(Def. 1) if len f = 0, then it = 0 and if len f > 0, then it ∈ dom f and for every
natural number i and for every extended reals r1, r2 such that i ∈ dom f

and r1 = f(i) and r2 = f(it) holds r1 ¬ r2 and for every natural number
j such that j ∈ dom f and f(j) = f(it) holds it ¬ j.

The functor minp f yielding a natural number is defined by
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(Def. 2) if len f = 0, then it = 0 and if len f > 0, then it ∈ dom f and for every
natural number i and for every extended reals r1, r2 such that i ∈ dom f

and r1 = f(i) and r2 = f(it) holds r1 ­ r2 and for every natural number
j such that j ∈ dom f and f(j) = f(it) holds it ¬ j.

The functors: max f and min f yielding extended reals are defined by terms

(Def. 3) f(maxp f),

(Def. 4) f(minp f),

respectively.
Let us consider a finite sequence f of elements of R and a natural number

i. Now we state the propositions:

(25) If 1 ¬ i ¬ len f , then f(i) ¬ f(maxp f) and f(i) ¬ max f .

(26) If 1 ¬ i ¬ len f , then f(i) ­ f(minp f) and f(i) ­ min f .

Let us consider a function F and objects x, y. Now we state the propositions:

(27) If x, y ∈ domF , then Swap(F, x, y) = F · (Swap(iddomF , x, y)).

(28) If x, y ∈ domF , then F and Swap(F, x, y) are fiberwise equipotent. The
theorem is a consequence of (27).

Now we state the proposition:

(29) Let us consider a set X, a function F , and objects x, y. Suppose x /∈ X
and y /∈ X. Then F �X = Swap(F, x, y)�X.

3. Open Covering of Intervals

Let A be a subset of R.
An open interval covering of A is an interval covering of A defined by

(Def. 5) for every element n of N, it(n) is open interval.

Let F be an open interval covering of A and n be an element of N. One
can verify that the functor F (n) yields an open interval subset of R. Let F be
a sequence of 2R.

An open interval covering of F is an interval covering of F defined by

(Def. 6) for every element n of N, it(n) is an open interval covering of F (n).

Let H be an open interval covering of F and n be an element of N. Let us
note that the functor H(n) yields an open interval covering of F (n). Let A be
a subset of R. The functor Svc2(A) yielding a subset of R is defined by

(Def. 7) for every extended real number x, x ∈ it iff there exists an open interval
covering F of A such that x = vol(F ).

Let us note that Svc2(A) is non empty. Now we state the propositions:

(30) Let us consider a subset A of R. Then
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(i) Svc2(A) ⊆ Svc(A), and

(ii) inf Svc(A) ¬ inf Svc2(A).

(31) Let us consider a sequence F of 2R, an open interval covering G of F ,
and a sequence H of N × N. Suppose rngH = N × N. Then On(G,H) is
an open interval covering of

⋃
rngF .

(32) Let us consider a subset A of R, and a sequence G of 2R. Suppose A ⊆⋃
rngG and for every element n of N, G(n) is open interval. Then G is

an open interval covering of A.

(33) Let us consider a sequence F of 2R, and a sequence G of (2R)N. Suppose
for every element n of N, G(n) is an open interval covering of F (n). Then
G is an open interval covering of F .

(34) Let us consider a sequence H of N × N. Suppose H is one-to-one and
rngH = N × N. Let us consider a natural number k. Then there exists
an element m of N such that for every sequence F of 2R for every open
interval covering G of F , (Ser((On(G,H)) vol))(k) ¬ (Ser vol(G))(m).

(35) Let us consider a sequence F of 2R, and an open interval covering G of
F . Then inf Svc2(

⋃
rngF ) ¬

∑
vol(G). The theorem is a consequence of

(34) and (31).

Let F be a non empty family of subsets of R. One can verify that an element
of F is a subset of R. Now we state the propositions:

(36) Let us consider an element A of IntervalsR. Suppose A is open interval.
Then there exists an open interval covering F of A such that

(i) F (0) = A, and

(ii) for every natural number n such that n 6= 0 holds F (n) = ∅, and

(iii)
⋃

rngF = A, and

(iv)
∑

((F ) vol) = ∅A.

Proof: Define P[natural number, set] ≡ if $1 = 0, then $2 = A and if
$1 6= 0, then $2 = ∅R. For every element n of N, there exists an element
E of 2R such that P[n,E]. Consider F being a function from N into 2R

such that for every element n of N, P[n, F (n)]. For every natural number
n such that n 6= 0 holds F (n) = ∅. For every object n, 0 ¬ ((F ) vol)(n).
Define P[natural number] ≡ ((

∑κ
α=0(F ) vol(α))κ∈N)($1) = ∅A. For every

natural number n such that P[n] holds P[n+1]. For every natural number
n, P[n].

∑
((F ) vol) = ∅A by [6, (2)], [8, (32)], [5, (52)]. �

(37) Let us consider subsets A, B of R, and an interval covering F of A. If
B ⊆ A, then F is an interval covering of B.
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(38) Let us consider subsets A, B of R, and an open interval covering F of
A. If B ⊆ A, then F is an open interval covering of B. The theorem is
a consequence of (37).

(39) Let us consider subsets A, B of R, an interval covering F of A, and
an interval covering G of B. If F = G, then (F ) vol = (G) vol.

(40) Let us consider a finite sequence F of elements of 2R, and a natural
number k. Suppose for every natural number n such that n ∈ domF holds
F (n) is an open interval subset of R and for every natural number n such
that 1 ¬ n < lenF holds

⋃
rng(F �n) meets F (n+ 1). Then

⋃
rng(F �k) is

an open interval subset of R.
Proof: Define P[natural number] ≡

⋃
rng(F �$1) is an open interval sub-

set of R. For every natural number k such that P[k] holds P[k + 1]. For
every natural number k, P[k]. �

(41) Let us consider a non empty, closed interval subset A of R, and a finite
sequence F of elements of 2R. Suppose A ⊆

⋃
rngF and for every natural

number n such that n ∈ domF holds A meets F (n) and for every natural
number n such that n ∈ domF holds F (n) is an open interval subset of
R. Then there exists a finite sequence G of elements of 2R such that

(i) F and G are fiberwise equipotent, and

(ii) for every natural number n such that 1 ¬ n < lenG holds
⋃

rng(G�n)
meets G(n+ 1).

Proof: Define P[natural number] ≡ if $1 ¬ lenF , then there exists a finite
sequence G of elements of 2R such that F and G are fiberwise equipotent
and for every natural number n such that 1 ¬ n < $1 holds

⋃
rng(G�n)

meets G(n + 1). For every non zero natural number k such that P[k]
holds P[k + 1]. For every non zero natural number k, P[k]. Consider G
being a finite sequence of elements of 2R such that F and G are fiberwise
equipotent and for every natural number n such that 1 ¬ n < lenF holds⋃

rng(G�n) meets G(n+ 1). �

4. Measure of Intervals by OS-Meas

Let us consider an element I of IntervalsR. Now we state the propositions:

(42) If I is open interval, then (OS-Meas)(I) ¬ ∅I. The theorem is a conse-
quence of (36) and (30).

(43) If I 6= ∅ and I is right open interval, then (OS-Meas)(I) ¬ ∅I. The
theorem is a consequence of (36), (38), (39), and (30).
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(44) If I is an interval, then (OS-Meas)(I) ¬ ∅I. The theorem is a consequ-
ence of (42) and (43).

(45) Let us consider a non empty, closed interval subset A of R, a finite
sequence F of elements of 2R, and a finite sequence G of elements of R.
Suppose A ⊆

⋃
rngF and lenF = lenG and for every natural number n

such that n ∈ domF holds F (n) is an open interval subset of R and for
every natural number n such that n ∈ domF holds G(n) = ∅F (n) and for
every natural number n such that n ∈ domF holds A meets F (n). Then
∅A ¬

∑
G.

Proof: Consider F1 being a finite sequence of elements of 2R such that
F and F1 are fiberwise equipotent and for every natural number n such
that 1 ¬ n < lenF1 holds

⋃
rng(F1�n) meets F1(n+ 1). Consider P being

a permutation of domF such that F = F1 ·P . Reconsider G1 = G · (P−1)
as a finite sequence of elements of R. For every natural number n such
that n ∈ domF1 holds G1(n) = ∅F1(n). Define P[natural number] ≡ if
$1 ∈ domF1, then ∅

⋃
rng(F1�$1) ¬

∑
(G1�$1). For every natural num-

ber k such that P[k] holds P[k + 1]. For every natural number k, P[k].⋃
rng(F1� lenF1) is an open interval subset of R. �

(46) Let us consider a non empty set X, a sequence f of X, and natural
numbers i, j. Then there exists a sequence g of X such that

(i) for every natural number n such that n 6= i and n 6= j holds f(n) =
g(n), and

(ii) f(i) = g(j), and

(iii) f(j) = g(i).

Proof: Define P[object, object] ≡ if $1 6= i and $1 6= j, then $2 = f($1)
and if $1 = i, then $2 = f(j) and if $1 = j, then $2 = f(i). For every
element n of N, there exists an element x of X such that P[n, x]. Consider
g being a function from N into X such that for every element n of N,
P[n, g(n)]. �

(47) Let us consider sequences f , g of R. Suppose f is non-negative and there
exists a natural number N such that (Ser f)(N) ¬ (Ser g)(N) and for every
natural number n such that n > N holds f(n) ¬ g(n). Then

∑
f ¬
∑
g.

Proof: Consider N being a natural number such that (Ser f)(N) ¬
(Ser g)(N) and for every natural number n such that n > N holds f(n) ¬
g(n). Define P[natural number] ≡ (Ser f)(N + $1) ¬ (Ser g)(N + $1). For
every natural number k such that P[k] holds P[k + 1]. For every natural
number m, P[m]. For every extended real x such that x ∈ rng Ser f there
exists an extended real y such that y ∈ rng Ser g and x ¬ y. �
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(48) Let us consider sequences f , g of R, and natural numbers j, k. Suppose
k < j and for every natural number n such that n < j holds f(n) = g(n).
Then (Ser f)(k) = (Ser g)(k).
Proof: Define P[natural number] ≡ if $1 ¬ k, then (Ser f)($1) =
(Ser g)($1). For every natural number m such that P[m] holds P[m + 1].
For every natural number m, P[m]. �

(49) Let us consider sequences f , g of R, and natural numbers i, j. Suppose
f is non-negative and i ­ j and for every natural number n such that
n 6= i and n 6= j holds f(n) = g(n) and f(i) = g(j) and f(j) = g(i). Then
(Ser f)(i) = (Ser g)(i).
Proof: For every element k of N, 0 ¬ g(k). �

(50) Let us consider sequences f , g of R, and natural numbers i, j. Suppose
f is non-negative and f(i) = g(j) and f(j) = g(i) and for every natural
number n such that n 6= i and n 6= j holds f(n) = g(n). Let us consider
a natural number n. If n ­ i and n ­ j, then (Ser f)(n) = (Ser g)(n).
Proof: Define P[natural number] ≡ if $1 ­ i and $1 ­ j, then (Ser f)($1) =
(Ser g)($1). For every natural number k such that P[k] holds P[k+ 1]. For
every natural number k, P[k]. �

(51) Let us consider sequences f , g of R, and natural numbers i, j. Suppose
f is non-negative and i ­ j and for every natural number n such that
n 6= i and n 6= j holds f(n) = g(n) and f(i) = g(j) and f(j) = g(i). Then∑
f =
∑
g.

Proof: For every element k of N, 0 ¬ g(k). �

(52) Let us consider a subset A of R, interval coverings F1, F2 of A, and
natural numbers n,m. Suppose for every natural number k such that k 6= n

and k 6= m holds F1(k) = F2(k) and F1(n) = F2(m) and F1(m) = F2(n).
Then vol(F1) = vol(F2). The theorem is a consequence of (51).

(53) Let us consider a subset A of R, interval coverings F1, F2 of A, and
natural numbers n,m. Suppose for every natural number k such that k 6= n

and k 6= m holds F1(k) = F2(k) and F1(n) = F2(m) and F1(m) = F2(n).
Let us consider a natural number k. Suppose k ­ n and k ­ m. Then
(Ser((F1) vol))(k) = (Ser((F2) vol))(k). The theorem is a consequence of
(50).

(54) Let us consider a non empty set X, a sequence s2 of X, and a finite
sequence f of elements of X. Suppose rng f ⊆ rng s2. Then there exists
a natural number N such that rng f ⊆ rng(s2�ZN ).
Proof: Define P[natural number] ≡ for every finite sequence F of ele-
ments of X such that lenF = $1 and rngF ⊆ rng s2 there exists a natural
number N such that rngF ⊆ rng(s2�ZN ). For every natural number k
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such that P[k] holds P[k + 1]. For every natural number k, P[k]. �

(55) Let us consider a non empty subset A of R, an interval covering F of
A, and a one-to-one finite sequence G of elements of 2R. Suppose rngG ⊆
rngF . Then there exists an interval covering F1 of A such that

(i) for every natural number n such that n ∈ domG holds G(n) = F1(n),
and

(ii) vol(F1) = vol(F ).

Proof: Define P[natural number] ≡ there exists an interval covering F0
of A such that for every natural number n such that n ∈ dom(G�$1) holds
(G�$1)(n) = F0(n) and F0 and F are fiberwise equipotent and vol(F0) =
vol(F ). P[0]. For every natural number k such that P[k] holds P[k + 1].
For every natural number k, P[k]. �

(56) Let us consider a non empty subset A of R, an interval covering F of
A, a one-to-one finite sequence G of elements of 2R, and a finite sequence
H of elements of R. Suppose rngG ⊆ rngF and domG = domH and for
every natural number n, H(n) = ∅G(n). Then

∑
H ¬ vol(F ).

Proof: Consider F1 being an interval covering of A such that for every
natural number n such that n ∈ domG holds G(n) = F1(n) and vol(F1) =
vol(F ). Consider S being a sequence of R such that

∑
H = S(lenH) and

S(0) = 0 and for every natural number n such that n < lenH holds
S(n + 1) = S(n) + H(n + 1). Define P[natural number] ≡ if $1 ¬ lenH,
then S($1) ¬ (Ser((F1) vol))($1). For every natural number n such that
P[n] holds P[n+ 1]. For every natural number n, P[n]. �

(57) Let us consider an interval I. Then ∅I = (OS-Meas)(I). The theorem is
a consequence of (44).

5. Construction of the One-Dimensional Lebesgue Measure

Let F be a finite sequence of elements of IntervalsR and n be a natural
number. Let us note that the functor F (n) yields an interval subset of R. The
functor pre-Meas yielding a non-negative, zeroed function from IntervalsR into
R is defined by the term

(Def. 8) OS-Meas � IntervalsR.

Now we state the propositions:

(58) Let us consider an element I of IntervalsR. Then (pre-Meas)(I) = ∅I.
The theorem is a consequence of (57).

(59) Let us consider an interval I. Then (pre-Meas)(I) = ∅I. The theorem is
a consequence of (58).
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(60) Let us consider elements A, B of IntervalsR. Suppose A misses B and A∪
B is an interval. Then (pre-Meas)(A∪B) = (pre-Meas)(A)+(pre-Meas)(B).
The theorem is a consequence of (58), (14), (15), (59), (16), (17), (19), (18),
(20), (21), (22), and (23).

(61) Let us consider a non empty, disjoint valued finite sequence F of elements
of IntervalsR. Suppose

⋃
F is an interval. Then there exists a natural

number n such that

(i) n ∈ domF , and

(ii) (
⋃
F ) \ F (n) is an interval.

The theorem is a consequence of (26).

(62) Let us consider an interval A. Then (pre-Meas) · 〈A〉 = 〈(pre-Meas)(A)〉.
Proof: Reconsider F = 〈A〉 as a finite sequence of elements of IntervalsR.
For every natural number n such that n ∈ dom((pre-Meas) · F ) holds
((pre-Meas) · F )(n) = 〈(pre-Meas)(A)〉(n). �

(63) Let us consider a disjoint valued finite sequence F of elements of IntervalsR.
Suppose

⋃
F ∈ IntervalsR. Then there exists a disjoint valued finite sequ-

ence G of elements of IntervalsR such that

(i) F and G are fiberwise equipotent, and

(ii) for every natural number n such that n ∈ domG holds
⋃

(G�n) ∈
IntervalsR and (pre-Meas)(

⋃
(G�n)) =

∑
(pre-Meas) · (G�n).

Proof: Define P[natural number] ≡ for every disjoint valued finite se-
quence H of elements of IntervalsR such that lenH = $1 and

⋃
H ∈

IntervalsR there exists a disjoint valued finite sequence G of elements of
IntervalsR such that H and G are fiberwise equipotent and for every na-
tural number n such that n ∈ domG holds

⋃
(G�n) ∈ IntervalsR and

(pre-Meas)(
⋃

(G�n)) =
∑

(pre-Meas) · (G�n). For every natural number k
such that P[k] holds P[k + 1]. For every natural number k, P[k]. �

(64) Let us consider finite sequences F , G of elements of R. Then

(i) if F is without −∞ and G is without −∞, then F a G is without
−∞, and

(ii) if F is without +∞ and G is without +∞, then F a G is without
+∞.

(65) Let us consider a finite sequence F of elements of R, and a natural
number k. Then

(i) if F is without −∞, then F�k is without −∞, and

(ii) if F is without +∞, then F�k is without +∞.
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(66) Let us consider a finite sequence F of elements of R. Then

(i) if F is without −∞, then
∑
F 6= −∞, and

(ii) if F is without +∞, then
∑
F 6= +∞.

Proof: Consider S being a sequence of R such that
∑
F = S(lenF )

and S(0) = 0 and for every natural number n such that n < lenF holds
S(n+1) = S(n)+F (n+1). Define P[natural number] ≡ if $1 ¬ lenF , then
S($1) 6= +∞. For every natural number n such that P[n] holds P[n+ 1].
For every natural number n, P[n]. �

(67) Let us consider without −∞ finite sequences R1, R2 of elements of R. If
R1 and R2 are fiberwise equipotent, then

∑
R1 =

∑
R2.

Proof: Define P[natural number] ≡ for every without −∞ finite sequen-
ces f , g of elements of R such that f and g are fiberwise equipotent and
len f = $1 holds

∑
f =
∑
g. For every natural number n such that P[n]

holds P[n+ 1]. P[0]. For every natural number n, P[n]. �

(68) Let us consider a disjoint valued finite sequence F of elements of IntervalsR.
Suppose

⋃
F ∈ IntervalsR. Then (pre-Meas)(

⋃
F ) =

∑
(pre-Meas) ·F . The

theorem is a consequence of (63), (59), and (67).

(69) Let us consider a disjoint valued function K from N into IntervalsR.
Suppose

⋃
K ∈ IntervalsR. Then (pre-Meas)(

⋃
K) ¬

∑
(pre-Meas) ·K.

Proof: Reconsider F = K as a sequence of 2R. For every element n of N,
((OS-Meas) · F )(n) = ((pre-Meas) ·K)(n). �

One can verify that the functor pre-Meas yields a pre-measure of IntervalsR.
The functor J-Meas yielding a measure on the field generated by IntervalsR is
defined by

(Def. 9) for every set A such that A ∈ the field generated by IntervalsR for
every disjoint valued finite sequence F of elements of IntervalsR such that
A =

⋃
F holds it(A) =

∑
(pre-Meas) · F .

Note that the functor J-Meas yields an induced measure of IntervalsR and
pre-Meas. Now we state the proposition:

(70) J-Meas is completely-additive.

The functor B-Meas yielding a σ-measure on the Borel sets is defined by the
term

(Def. 10) σ-Meas(the Caratheodory measure determined by J-Meas)�(the Borel
sets).

Let us consider an interval A. Now we state the propositions:

(71) (J-Meas)(A) = ∅A. The theorem is a consequence of (62) and (59).

(72) (B-Meas)(A) = ∅A. The theorem is a consequence of (71).
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(73) A ∈ the Borel sets.

The functor L-Field yielding a σ-field of subsets of R is defined by the term

(Def. 11) COM(the Borel sets,B-Meas).

The functor L-Meas yielding a σ-measure on L-Field is defined by the term

(Def. 12) COM(B-Meas).

Observe that L-Meas is complete. Now we state the propositions:

(74) ∅ is a set with measure zero w.r.t. B-Meas. The theorem is a consequence
of (72).

(75) Let us consider a real number a. Then {a} is a set with measure zero
w.r.t. B-Meas. The theorem is a consequence of (72).

(76) The Borel sets ⊆ L-Field. The theorem is a consequence of (74).

(77) Let us consider an interval A. Then (L-Meas)(A) = ∅A. The theorem is
a consequence of (73), (74), and (72).
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