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Summary. The subset sum problem is a basic problem in the field of
theoretical computer science, especially in the complexity theory [3]. The input
is a sequence of positive integers and a target positive integer. The task is to
determine if there exists a subsequence of the input sequence with sum equal
to the target integer. It is known that the problem is NP-hard [2] and can be
solved by dynamic programming in pseudo-polynomial time [1]. In this article
we formalize the recurrence relation of the dynamic programming.
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1. Preliminaries

Let x be a finite sequence and I be a set. The functor Seq(x, I) yielding
a finite sequence is defined by the term

(Def. 1) Seq(x�I).
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Let D be a set and x be a D-valued finite sequence. One can check that
Seq(x, I) is D-valued.

Let x be a real-valued finite sequence. Let us observe that Seq(x, I) is real-
valued.

Let D be a set, x be a D-valued finite sequence, and i be a natural number.
Let us observe that x�i is D-valued as a finite sequence-like function.

Let x be a real-valued finite sequence. One can verify that x�i is real-valued
as a finite sequence-like function.

2. Summing Up Finite Sequences

Let x be an R-valued finite sequence and a be a real number. We say that
the sum of x is equal to a if and only if

(Def. 2) there exists a set I such that I ⊆ domx and
∑

Seq(x, I) = a.

The functor Qx yielding a function from Seg lenx×R into Boolean is defined
by

(Def. 3) for every natural number i and for every real number s such that 1 ¬
i ¬ lenx holds if the sum of x�i is equal to s, then it(i, s) = true and if
the sum of x�i is not equal to s, then it(i, s) = false.

Let A be a subset of N, i be a natural number, s be a real number, and f
be a function from A× R into Boolean. Let us note that f(i, s) is Boolean.

Let a, b be objects. The functor a=Σ b yielding an object is defined by the
term

(Def. 4) (a = b→ true, false).
Note that a=Σ b is Boolean.
Let a, b be extended reals. The functor a¬Σ b yielding an object is defined

by the term

(Def. 5) (a > b→ false, true).
Let us note that a¬Σ b is Boolean.
Now we state the propositions:

(1) Let us consider a real number s, and an R-valued finite sequence x.
Suppose 1 ¬ lenx. Then Qx(1, s) = (x(1) =Σ s) ∨ (s=Σ 0).

(2) Let us consider functions f , g, and sets X, Y. Suppose rng g ⊆ X. Then
(f�(X ∪ Y )) · g = (f�X) · g.
Proof: For every object i, i ∈ dom((f�(X ∪ Y )) · g) iff i ∈ dom g and
g(i) ∈ dom(f�X). For every object i such that i ∈ dom((f�(X ∪ Y )) · g)
holds ((f�(X ∪ Y )) · g)(i) = (f�X)(g(i)). �
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(3) Let us consider an R-valued finite sequence x, a natural number i, and
a set I0. Suppose I0 ⊆ Seg i and Seg(i + 1) ⊆ domx. Then Seq(x�(i +
1), I0 ∪ {i+ 1}) = Seq(x�i, I0) a 〈x(i+ 1)〉. The theorem is a consequence
of (2).

(4) Let us consider a real-valued finite sequence x. If x 6= ∅ and x is positive,
then 0 <

∑
x.

(5) Let us consider a real-valued finite sequence x, and a natural number i.
Suppose x is positive and 1 ¬ i ¬ lenx. Then

(i) x�i is positive, and

(ii) x�i 6= ∅.

Proof: For every natural number j such that j ∈ dom(x�i) holds 0 <
(x�i)(j) by [4, (112)]. �

(6) Let us consider a real-valued finite sequence x, and a set I. Suppose x
is positive and I ⊆ domx and I 6= ∅. Then

(i) Seq(x, I) is positive, and

(ii) Seq(x, I) 6= ∅.

Proof: For every natural number j such that j ∈ dom(Seq(x, I)) holds
0 < (Seq(x, I))(j). �

3. Recurrence Relation of Dynamic Programming
for the Subset Sum Problem

Now we state the proposition:

(7) Let us consider an R-valued finite sequence x. Suppose x is positive. Let
us consider a natural number i, and a real number s. Suppose 1 ¬ i < lenx.
Then Qx(i+ 1, s) = Qx(i, s) ∨ (x(i+ 1)¬Σ s) ∧Qx(i, s− x(i+ 1)).
Proof: Qx(i+1, s) = true iff Qx(i, s)∨(x(i+1)¬Σ s)∧Qx(i, s−x(i+1)) =
true. �
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