

Dynamic Programming for the Subset Sum $\mathbf{Problem}^1$

Hiroshi Fujiwara Shinshu University Nagano, Japan Hokuto Watari Nagano Electronics Industrial Co., Ltd. Chikuma, Japan

Hiroaki Yamamoto Shinshu University Nagano, Japan

Summary. The subset sum problem is a basic problem in the field of theoretical computer science, especially in the complexity theory [3]. The input is a sequence of positive integers and a target positive integer. The task is to determine if there exists a subsequence of the input sequence with sum equal to the target integer. It is known that the problem is NP-hard [2] and can be solved by dynamic programming in pseudo-polynomial time [1]. In this article we formalize the recurrence relation of the dynamic programming.

MSC: 90C39 68Q25 68V20

Keywords: dynamic programming; subset sum problem; complexity theory

MML identifier: PRSUBSET, version: 8.1.09 5.60.1371

1. Preliminaries

Let x be a finite sequence and I be a set. The functor Seq(x, I) yielding a finite sequence is defined by the term

(Def. 1) Seq $(x \upharpoonright I)$.

¹This work was supported by JSPS KAKENHI Grant Numbers JP16K00033, JP17K00013 and JP17K00183.

Let D be a set and x be a D-valued finite sequence. One can check that Seq(x, I) is D-valued.

Let x be a real-valued finite sequence. Let us observe that Seq(x, I) is real-valued.

Let D be a set, x be a D-valued finite sequence, and i be a natural number. Let us observe that $x \upharpoonright i$ is D-valued as a finite sequence-like function.

Let x be a real-valued finite sequence. One can verify that x | i is real-valued as a finite sequence-like function.

2. Summing Up Finite Sequences

Let x be an \mathbb{R} -valued finite sequence and a be a real number. We say that the sum of x is equal to a if and only if

(Def. 2) there exists a set I such that $I \subseteq \operatorname{dom} x$ and $\sum \operatorname{Seq}(x, I) = a$.

The functor \mathbf{Q}_x yielding a function from Seg len $x \times \mathbb{R}$ into *Boolean* is defined by

(Def. 3) for every natural number i and for every real number s such that $1 \leq i \leq \text{len } x$ holds if the sum of $x \upharpoonright i$ is equal to s, then it(i, s) = true and if the sum of $x \upharpoonright i$ is not equal to s, then it(i, s) = true and if

Let A be a subset of \mathbb{N} , i be a natural number, s be a real number, and f be a function from $A \times \mathbb{R}$ into *Boolean*. Let us note that f(i, s) is Boolean.

Let a, b be objects. The functor $a =_{\Sigma} b$ yielding an object is defined by the term

(Def. 4) $(a = b \rightarrow true, false).$

Note that $a =_{\Sigma} b$ is Boolean.

Let a, b be extended reals. The functor $a \leq_{\Sigma} b$ yielding an object is defined by the term

(Def. 5) $(a > b \rightarrow false, true).$

Let us note that $a \leq_{\Sigma} b$ is Boolean.

Now we state the propositions:

- (1) Let us consider a real number s, and an \mathbb{R} -valued finite sequence x. Suppose $1 \leq \text{len } x$. Then $Q_x(1,s) = (x(1) = \Sigma s) \lor (s = \Sigma 0)$.
- (2) Let us consider functions f, g, and sets X, Y. Suppose rng $g \subseteq X$. Then $(f \upharpoonright (X \cup Y)) \cdot g = (f \upharpoonright X) \cdot g$.

PROOF: For every object $i, i \in \text{dom}((f \upharpoonright (X \cup Y)) \cdot g)$ iff $i \in \text{dom} g$ and $g(i) \in \text{dom}(f \upharpoonright X)$. For every object i such that $i \in \text{dom}((f \upharpoonright (X \cup Y)) \cdot g)$ holds $((f \upharpoonright (X \cup Y)) \cdot g)(i) = (f \upharpoonright X)(g(i))$. \Box

- (3) Let us consider an \mathbb{R} -valued finite sequence x, a natural number i, and a set I_0 . Suppose $I_0 \subseteq \text{Seg } i$ and $\text{Seg}(i+1) \subseteq \text{dom } x$. Then $\text{Seq}(x \upharpoonright (i+1), I_0 \cup \{i+1\}) = \text{Seq}(x \upharpoonright i, I_0) \cap \langle x(i+1) \rangle$. The theorem is a consequence of (2).
- (4) Let us consider a real-valued finite sequence x. If $x \neq \emptyset$ and x is positive, then $0 < \sum x$.
- (5) Let us consider a real-valued finite sequence x, and a natural number i. Suppose x is positive and $1 \le i \le \ln x$. Then
 - (i) $x \upharpoonright i$ is positive, and
 - (ii) $x \upharpoonright i \neq \emptyset$.

PROOF: For every natural number j such that $j \in \text{dom}(x | i)$ holds 0 < (x | i)(j) by [4, (112)]. \Box

- (6) Let us consider a real-valued finite sequence x, and a set I. Suppose x is positive and $I \subseteq \operatorname{dom} x$ and $I \neq \emptyset$. Then
 - (i) Seq(x, I) is positive, and
 - (ii) $\operatorname{Seq}(x, I) \neq \emptyset$.

PROOF: For every natural number j such that $j \in \text{dom}(\text{Seq}(x, I))$ holds 0 < (Seq(x, I))(j). \Box

3. Recurrence Relation of Dynamic Programming for the Subset Sum Problem

Now we state the proposition:

(7) Let us consider an \mathbb{R} -valued finite sequence x. Suppose x is positive. Let us consider a natural number i, and a real number s. Suppose $1 \leq i < \text{len } x$. Then $Q_x(i+1,s) = Q_x(i,s) \lor (x(i+1) \leq s) \land Q_x(i,s-x(i+1))$. PROOF: $Q_x(i+1,s) = true$ iff $Q_x(i,s) \lor (x(i+1) \leq s) \land Q_x(i,s-x(i+1)) = true$. \Box

ACKNOWLEDGEMENT: We are very grateful to Prof. Yasunari Shidama for his encouraging support. We thank Prof. Pauline N. Kawamoto, Dr. Hiroyuki Okazaki, and Dr. Hiroshi Yamazaki for their helpful discussions.

References

 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979. ISBN 0716710447.

- [3] Raymond E. Miller, James W. Thatcher, and Jean D. Bohlinger, editors. Complexity of Computer Computations, 1972. Springer US. ISBN 978-1-4684-2001-2. doi:10.1007/978-1-4684-2001-2_9.
- Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.

Accepted January 13, 2020