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Stability of the 7-3 Compressor Circuit for
Wallace Tree. Part I1
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Summary. To evaluate our formal verification method on a real-size cal-
culation circuit, in this article, we continue to formalize the concept of the 7-3
Compressor (STC) Circuit [6] for Wallace Tree [11], to define the structures of
calculation units for a very fast multiplication algorithm for VLSI implementation
[10]. We define the circuit structure of the tree constructions of the Generalized
Full Adder Circuits (GFAs). We then successfully prove its circuit stability of
the calculation outputs after four and six steps. The motivation for this research
is to establish a technique based on formalized mathematics and its applications
for calculation circuits with high reliability, and to implement the applications
of the reliable logic synthesizer and hardware compiler [5].
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0. Introduction

Since calculation models of the arithmetic logic unit based on many sorted
algebra have been proposed, we continue to verify the structure and design of
these circuits using the Mizar [2], [3], [4] proof checking system. Actually, the
stability of circuit primitives is proved based on the definitions and theorems on
logic operations, hardware gates, and signal lines [8], [9], [7].
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The various concepts for the Boolean operations, the logic gate elements ne-
eded to define the digital circuit, and the connections are defined and have been
proved [1]. For logic gate elements that compose a calculation circuit using many
Boolean operations, we have prepared a practical collection of logic gates [13].
To construct the adder circuit structure for the RSD numeric representation,
we then formalized the definitions and properties of the Generalized Full Adder
Circuits (GFAs) to have three inputs and two outputs [14]. Since we have to
scale the size of evaluation up to this formal verification method on a real-size
calculation circuit, we have already completed formalize the concept of the 4-2
Binary Addition Cell primitives (FTAs) [12] to construct the structures of cal-
culation units for a very fast multiplication algorithm for VLSI implementation
[10].

There is the Wallace tree multiplication method [11] as achieved high-speed
multiplier, which is connected like the tree using the usual full adder (FA) circuit
cell. Since it transforms the Wallace tree multiplication method to improve
the high-speed computation and circuit regularity, there is also a refinement
multiplication method using the 7-3 Compressor Circuit [6].

We show the component symbol and the block diagram of a 7-3 Compressor
Circuit implementation in Figure 1 and Figure 2 using four GFAs. First two
GFAs take six of the seven inputs (x1,x2,x3,x5,x6,x7) and generate two sum
(A1,A2) and two carry outputs (C1,C2) in Layer-I (after 2-steps). The sum
outputs are combined with the seventh input (x4) in another GFA to generate
the s0 output of the 7-3 Compressor in Layer-II (after 4-steps). The carry output
of this GFA is combined with the carry outputs from the two first level GFAs
using fourth GFA to yield s1 and s2, with weights of two and four respectively
in Layer-III (after 6-steps).

x1 x2 x3 x4 x5 x6 x7 Inputs : x1,x2,...,x7 (without pair)
| | | | | | |
+-*--*--*--*--*--*--*-+
| |
| STC TYPE-0 |
| |
+------*---*---*------+

| | |
s2 s1 s0 Outputs : s2,s1,s0 (pair)

Composition : Cascading tree together with four GFA TYPE-0
Function : [s2:s1:s0] = bit_count_of_<x1,x2,...,x7>

Fig.1 7-3 Compressor Circuit (Seven-to-Three Compressor:STC): TYPE-0,
Component Symbol.
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7-inputs x1 x2 x3 x4 x5 x6 x7 ..............
| / / / | / /

+---*---* / / +---*---* /
| GFA *__/ / | GFA *__/
| TYPE0 | / | TYPE0 | LAYER-I
*---*---+ / *---*---+ (2-steps)
/ | / / / |

C1 ___/ A1| / C2/ A2/ ..................V......
/ _____|_____/____/ /
/ / | / /
/ / +---*---* /
/ / | GFA *_______/ LAYER-II
/ / | TYPE0 | (4-steps)
/ / *---*---+ |

C1| C2/ C3/ A3/ ........................V......
+---*---* / /
| GFA *____/ /
| TYPE0 | ____/ LAYER-III
*---*---+ / (6-steps)
/ | / |
s2 s1 s0 3-outputs ..............................V......

Intermediate Outputs (2-steps):
C1 := GFA0CarryOutput(x1,x2,x3)
C2 := GFA0CarryOutput(x5,x6,x7)
A1 := GFA0AdderOutput(x1,x2,x3)
A2 := GFA0AdderOutput(x5,x6,x7)
Intermediate Output (4-steps):
C3 := GFA0CarryOutput(A1,A2,x4)
External Outputs (4,6-steps):
s0 := GFA0AdderOutput(A1,A2,x4) (=A3)
s1 := GFA0AdderOutput(C1,C2,C3)
s2 := GFA0CarryOutput(C1,C2,C3)

Composite Circuit Structure:
( ( BitGFA0Str(x1,x2,x3) +* BitGFA0Str(x5,x6,x7) ) # STC0IIStr
+* BitGFA0Str(A1,A2,x4) ) # STC0IStr
+* BitGFA0Str(C1,C2,C3) # STC0Str
--->
STC0Str(x1,x2,x3,x4,x5,x6,x7)

Fig.2 7-3 Compressor Circuit, Block Diagram and Calculation Stability:
Following(s,6) is stable.
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1. Properties of ‘Intermediate’
STC Circuit Structure (LAYER-I)

Let x1, x2, x3, x4 be non pair objects. Let us note that {x1, x2, x3, x4} has
no pairs.

Let x5 be a non pair object. Observe that {x1, x2, x3, x4, x5} has no pairs.
Let x6 be a non pair object. Let us note that {x1, x2, x3, x4, x5, x6} has no

pairs.
Let x7 be a non pair object. One can verify that {x1, x2, x3, x4, x5, x6, x7}

has no pairs.
Let x1, x2, x3, x5, x6, x7 be sets. The functor STC0IIStr(x1, x2, x3, x5, x6, x7)

yielding an unsplit, non void, strict, non empty many sorted signature with
arity held in gates and Boolean denotation held in gates is defined by the term

(Def. 1) BitGFA0Str(x1, x2, x3)+·BitGFA0Str(x5, x6, x7).

The functor STC0IICirc(x1, x2, x3, x5, x6, x7) yielding a strict, Boolean cir-
cuit of STC0IIStr(x1, x2, x3, x5, x6, x7) with denotation held in gates is defined
by the term

(Def. 2) BitGFA0Circ(x1, x2, x3)+·BitGFA0Circ(x5, x6, x7).

Let us consider sets x1, x2, x3, x5, x6, x7. Now we state the propositions:

(1) InnerVertices(STC0IIStr(x1, x2, x3, x5, x6, x7)) = (({〈〈〈x1, x2〉, xor2 〉〉,
GFA0AdderOutput(x1, x2, x3)}∪ {〈〈〈x1, x2〉, and2 〉〉, 〈〈〈x2, x3〉, and2 〉〉, 〈〈〈x3,
x1〉, and2 〉〉,GFA0CarryOutput(x1, x2, x3)}) ∪ {〈〈〈x5, x6〉, xor2 〉〉,GFA0Ad-
derOutput(x5, x6, x7)}) ∪ {〈〈〈x5, x6〉, and2 〉〉, 〈〈〈x6, x7〉, and2 〉〉, 〈〈〈x7, x5〉,
and2 〉〉,GFA0CarryOutput(x5, x6, x7)}.

(2) InnerVertices(STC0IIStr(x1, x2, x3, x5, x6, x7)) is a binary relation.

Let us consider non pair sets x1, x2, x3, x5, x6, x7. Now we state the pro-
positions:

(3) InputVertices(STC0IIStr(x1, x2, x3, x5, x6, x7)) = {x1, x2, x3, x5, x6, x7}.
(4) InputVertices(STC0IIStr(x1, x2, x3, x5, x6, x7)) has no pairs.

Let us consider sets x1, x2, x3, x5, x6, x7. Now we state the propositions:

(5) x1, x2, x3, x5, x6, x7, 〈〈〈x1, x2〉, xor2 〉〉, GFA0AdderOutput(x1, x2, x3),
〈〈〈x1, x2〉, and2 〉〉, 〈〈〈x2, x3〉, and2 〉〉, 〈〈〈x3, x1〉, and2 〉〉, GFA0CarryOutput(x1,
x2, x3), 〈〈〈x5, x6〉, xor2 〉〉, GFA0AdderOutput(x5, x6, x7), 〈〈〈x5, x6〉, and2 〉〉,
〈〈〈x6, x7〉, and2 〉〉, 〈〈〈x7, x5〉, and2 〉〉, GFA0CarryOutput(x5, x6, x7) ∈ the
carrier of STC0IIStr(x1, x2, x3, x5, x6, x7).

(6) 〈〈〈x1, x2〉, xor2 〉〉, GFA0AdderOutput(x1, x2, x3), 〈〈〈x1, x2〉, and2 〉〉, 〈〈〈x2,
x3〉, and2 〉〉, 〈〈〈x3, x1〉, and2 〉〉, GFA0CarryOutput(x1, x2, x3), 〈〈〈x5, x6〉, xor2 〉〉,
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GFA0AdderOutput(x5, x6, x7), 〈〈〈x5, x6〉, and2 〉〉, 〈〈〈x6, x7〉, and2 〉〉, 〈〈〈x7, x5〉,
and2 〉〉, GFA0CarryOutput(x5, x6, x7) ∈ InnerVertices(STC0IIStr(x1, x2,
x3, x5, x6, x7)). The theorem is a consequence of (1).

(7) Let us consider non pair sets x1, x2, x3, x5, x6, x7. Then x1, x2, x3, x5,
x6, x7 ∈ InputVertices(STC0IIStr(x1, x2, x3, x5, x6, x7)). The theorem is
a consequence of (3).

Let x1, x2, x3, x5, x6, x7 be sets. The functors: STC0IICarryOutC1(x1, x2, x3,
x5, x6, x7), STC0IIAdderOutA1(x1, x2, x3, x5, x6, x7), STC0IICarryOutC2(x1,
x2, x3, x5, x6, x7), and STC0IIAdderOutA2(x1, x2, x3, x5, x6, x7) yielding ele-

ments of InnerVertices(STC0IIStr(x1, x2, x3, x5, x6, x7)) are defined by terms

(Def. 3) GFA0CarryOutput(x1, x2, x3),

(Def. 4) GFA0AdderOutput(x1, x2, x3),

(Def. 5) GFA0CarryOutput(x5, x6, x7),

(Def. 6) GFA0AdderOutput(x5, x6, x7),

respectively. Now we state the propositions:

(8) Let us consider non pair sets x1, x2, x3, x5, x6, x7, a state s of STC0IICirc
(x1, x2, x3, x5, x6, x7), and elements a1, a2, a3, a5, a6, a7 of Boolean. Sup-
pose a1 = s(x1) and a2 = s(x2) and a3 = s(x3) and a5 = s(x5) and
a6 = s(x6) and a7 = s(x7). Then

(i) (Following(s, 2))(STC0IICarryOutC1(x1, x2, x3, x5, x6, x7)) = (a1 ∧
a2 ∨ a2 ∧ a3) ∨ a3 ∧ a1, and

(ii) (Following(s, 2))(STC0IIAdderOutA1(x1, x2, x3, x5, x6, x7)) = (a1 ⊕
a2)⊕ a3, and

(iii) (Following(s, 2))(STC0IICarryOutC2(x1, x2, x3, x5, x6, x7)) = (a5 ∧
a6 ∨ a6 ∧ a7) ∨ a7 ∧ a5, and

(iv) (Following(s, 2))(STC0IIAdderOutA2(x1, x2, x3, x5, x6, x7)) = (a5 ⊕
a6)⊕ a7, and

(v) (Following(s, 2))(x1) = a1, and

(vi) (Following(s, 2))(x2) = a2, and

(vii) (Following(s, 2))(x3) = a3, and

(viii) (Following(s, 2))(x5) = a5, and

(ix) (Following(s, 2))(x6) = a6, and

(x) (Following(s, 2))(x7) = a7.

The theorem is a consequence of (7).

(9) Let us consider non pair sets x1, x2, x3, x5, x6, x7, and a state s of
STC0IICirc(x1, x2, x3, x5, x6, x7). Then Following(s, 2) is stable.
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2. Properties of ‘Intermediate’
STC Circuit Structure (LAYER-II)

Let x1, x2, x3, x4, x5, x6, x7 be sets. The functor STC0IStr(x1, x2, x3, x4, x5,
x6, x7) yielding an unsplit, non void, strict, non empty many sorted signa-

ture with arity held in gates and Boolean denotation held in gates is defined by
the term

(Def. 7) STC0IIStr(x1, x2, x3, x5, x6, x7)+·BitGFA0Str(GFA0AdderOutput(x1,
x2, x3),GFA0AdderOutput(x5, x6, x7), x4).

The functor STC0ICirc(x1, x2, x3, x4, x5, x6, x7) yielding a strict, Boolean
circuit of STC0IStr(x1, x2, x3, x4, x5, x6, x7) with denotation held in gates is de-
fined by the term

(Def. 8) STC0IICirc(x1, x2, x3, x5, x6, x7)+·BitGFA0Circ(GFA0AdderOutput(x1,
x2, x3),GFA0AdderOutput(x5, x6, x7), x4).

Let us consider sets x1, x2, x3, x4, x5, x6, x7.
Now we state the propositions:

(10) InnerVertices(STC0IStr(x1, x2, x3, x4, x5, x6, x7)) =
{〈〈〈x1, x2〉, xor2 〉〉,GFA0AdderOutput(x1, x2, x3)}∪
{〈〈〈x1, x2〉, and2 〉〉, 〈〈〈x2, x3〉, and2 〉〉, 〈〈〈x3, x1〉, and2 〉〉,GFA0CarryOutput(x1,
x2, x3)}∪

{〈〈〈x5, x6〉, xor2 〉〉,GFA0AdderOutput(x5, x6, x7)}∪
{〈〈〈x5, x6〉, and2 〉〉, 〈〈〈x6, x7〉, and2 〉〉, 〈〈〈x7, x5〉, and2 〉〉,GFA0CarryOutput(x5,
x6, x7)}∪

{〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉, xor2 〉〉,
GFA0AdderOutput(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput
(x5, x6, x7), x4)}∪

{〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉, and2 〉〉,
〈〈〈GFA0AdderOutput(x5, x6, x7), x4〉, and2 〉〉, 〈〈〈x4,GFA0AdderOutput
(x1, x2, x3)〉, and2 〉〉,GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),
GFA0AdderOutput(x5, x6, x7), x4)}.

The theorem is a consequence of (1).

(11) InnerVertices(STC0IStr(x1, x2, x3, x4, x5, x6, x7)) is a binary relation.

(12) Let us consider non pair sets x1, x2, x3, x5, x6, x7, and a set x4. Suppo-
se x4 6= 〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉,
xor2 〉〉 and x4 6= 〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5,
x6, x7)〉, and2 〉〉 and x4 /∈ InnerVertices(STC0IIStr(x1, x2, x3, x5, x6, x7)).
Then InputVertices(STC0IStr(x1, x2, x3, x4, x5, x6, x7)) = {x1, x2, x3, x4,
x5, x6, x7}. The theorem is a consequence of (1) and (3).

Let us consider non pair sets x1, x2, x3, x4, x5, x6, x7.



Stability of the 7-3 compressor circuit for Wallace ... 71

(13) InputVertices(STC0IStr(x1, x2, x3, x4, x5, x6, x7)) = {x1, x2, x3, x4, x5, x6,
x7}. The theorem is a consequence of (12).

(14) InputVertices(STC0IStr(x1, x2, x3, x4, x5, x6, x7)) has no pairs. The the-
orem is a consequence of (13).

Let us consider sets x1, x2, x3, x4, x5, x6, x7.

(15) x1, x2, x3, x4, x5, x6, x7, 〈〈〈x1, x2〉, xor2 〉〉, GFA0AdderOutput(x1, x2, x3),
〈〈〈x1, x2〉, and2 〉〉, 〈〈〈x2, x3〉, and2 〉〉, 〈〈〈x3, x1〉, and2 〉〉, GFA0CarryOutput(x1,
x2, x3), 〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉,
xor2 〉〉, GFA0AdderOutput(GFA0AdderOutput(x1, x2, x3),GFA0Adder
Output(x5, x6, x7), x4), 〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0AdderOut−
put(x5, x6, x7)〉, and2 〉〉, 〈〈〈GFA0AdderOutput(x5, x6, x7), x4〉, and2 〉〉, 〈〈〈x4,
GFA0AdderOutput(x1, x2, x3)〉, and2 〉〉 ∈ the carrier of STC0IStr(x1, x2,
x3, x4, x5, x6, x7).

And also GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),GFA0
AdderOutput(x5, x6, x7), x4), 〈〈〈x5, x6〉, xor2 〉〉,GFA0AdderOutput(x5, x6,
x7), 〈〈〈x5, x6〉, and2 〉〉, 〈〈〈x6, x7〉, and2 〉〉, 〈〈〈x7, x5〉, and2 〉〉, GFA0CarryOut−
put(x5, x6, x7) ∈ the carrier of STC0IStr(x1, x2, x3, x4, x5, x6, x7).
The theorem is a consequence of (5).

(16) 〈〈〈x1, x2〉, xor2 〉〉, GFA0AdderOutput(x1, x2, x3), 〈〈〈x1, x2〉, and2 〉〉, 〈〈〈x2,
x3〉, and2 〉〉, 〈〈〈x3, x1〉, and2 〉〉, GFA0CarryOutput(x1, x2, x3), 〈〈〈GFA0Adder
Output(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉, xor2 〉〉,GFA0Adder
Output(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7), x4),
〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉, and2 〉〉,
〈〈〈GFA0AdderOutput(x5, x6, x7), x4〉, and2 〉〉, 〈〈〈x4,GFA0AdderOutput
(x1, x2, x3)〉, and2 〉〉, GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),
GFA0AdderOutput(x5, x6, x7), x4), 〈〈〈x5, x6〉, xor2 〉〉, GFA0AdderOutput
(x5, x6, x7), 〈〈〈x5, x6〉, and2 〉〉, 〈〈〈x6, x7〉, and2 〉〉, 〈〈〈x7, x5〉, and2 〉〉, GFA0Carry
Output(x5, x6, x7) ∈ InnerVertices(STC0IStr(x1, x2, x3, x4, x5, x6, x7)). The
theorem is a consequence of (10).

(17) Let us consider non pair sets x1, x2, x3, x5, x6, x7, and a set x4. Suppo-
se x4 6= 〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉,
xor2 〉〉 and x4 6= 〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5,
x6, x7)〉, and2 〉〉 and x4 /∈ InnerVertices(STC0IIStr(x1, x2, x3, x5, x6, x7)).
Then x1, x2, x3, x4, x5, x6, x7 ∈ InputVertices(STC0IStr(x1, x2, x3, x4, x5,
x6, x7)). The theorem is a consequence of (12).

(18) Let us consider non pair sets x1, x2, x3, x4, x5, x6, x7. Then x1, x2,
x3, x4, x5, x6, x7 ∈ InputVertices(STC0IStr(x1, x2, x3, x4, x5, x6, x7)). The
theorem is a consequence of (13).
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Let x1, x2, x3, x4, x5, x6, x7 be sets. The functors: STC0ICarryOutC1(x1, x2,
x3, x4, x5, x6, x7), STC0ICarryOutC2(x1, x2, x3, x4, x5, x6, x7), STC0ICarry
OutC3(x1, x2, x3, x4, x5, x6, x7), and STC0IAdderOutA3(x1, x2, x3, x4, x5, x6,
x7) yielding elements of InnerVertices(STC0IStr(x1, x2, x3, x4, x5, x6, x7)) are

defined by terms

(Def. 9) GFA0CarryOutput(x1, x2, x3),

(Def. 10) GFA0CarryOutput(x5, x6, x7),

(Def. 11) GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput
(x5, x6, x7), x4),

(Def. 12) GFA0AdderOutput(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput
(x5, x6, x7), x4),

respectively.
Now we state the propositions:

(19) Let us consider non pair sets x1, x2, x3, x4, x5, x6, x7, a state s of
STC0ICirc(x1, x2, x3, x4, x5, x6, x7), and elements a1, a2, a3, a4, a5, a6,
a7 of Boolean. Suppose a1 = s(x1) and a2 = s(x2) and a3 = s(x3) and
a4 = s(x4) and a5 = s(x5) and a6 = s(x6) and a7 = s(x7). Then

(i) (Following(s, 2))(STC0ICarryOutC1(x1, x2, x3, x4, x5, x6, x7)) = (a1∧
a2 ∨ a2 ∧ a3) ∨ a3 ∧ a1, and

(ii) (Following(s, 2))(STC0ICarryOutC2(x1, x2, x3, x4, x5, x6, x7)) = (a5∧
a6 ∨ a6 ∧ a7) ∨ a7 ∧ a5, and

(iii) (Following(s, 4))(STC0ICarryOutC3(x1, x2, x3, x4, x5, x6, x7)) =
(((a1⊕a2)⊕a3)∧ ((a5⊕a6)⊕a7)∨ ((a5⊕a6)⊕a7)∧a4)∨a4∧ ((a1⊕
a2)⊕ a3), and

(iv) (Following(s, 4))(STC0IAdderOutA3(x1, x2, x3, x4, x5, x6, x7)) =
(((((a1 ⊕ a2)⊕ a3)⊕ a4)⊕ a5)⊕ a6)⊕ a7, and

(v) (Following(s, 4))(x1) = a1, and

(vi) (Following(s, 4))(x2) = a2, and

(vii) (Following(s, 4))(x3) = a3, and

(viii) (Following(s, 4))(x4) = a4, and

(ix) (Following(s, 4))(x5) = a5, and

(x) (Following(s, 4))(x6) = a6, and

(xi) (Following(s, 4))(x7) = a7.

(20) Let us consider non pair sets x1, x2, x3, x4, x5, x6, x7, and a state s
of STC0ICirc(x1, x2, x3, x4, x5, x6, x7). Then Following(s, 4) is stable. The
theorem is a consequence of (9).
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3. Properties of STC Circuit Structure (LAYER-III)

Let x1, x2, x3, x4, x5, x6, x7 be sets. The functor STC0Str(x1, x2, x3, x4, x5,
x6, x7) yielding an unsplit, non void, strict, non empty many sorted signa-

ture with arity held in gates and Boolean denotation held in gates is defined by
the term

(Def. 13) STC0IStr(x1, x2, x3, x4, x5, x6, x7)+·BitGFA0Str(STC0ICarryOutC1(x1,
x2, x3, x4, x5, x6, x7),STC0ICarryOutC2(x1, x2, x3, x4, x5, x6, x7),STC0I
CarryOutC3(x1, x2, x3, x4, x5, x6, x7)).

The functor STC0Circ(x1, x2, x3, x4, x5, x6, x7) yielding a strict, Boolean cir-
cuit of STC0Str(x1, x2, x3, x4, x5, x6, x7) with denotation held in gates is defined
by the term

(Def. 14) STC0ICirc(x1, x2, x3, x4, x5, x6, x7)+·BitGFA0Circ(STC0ICarryOutC1
(x1, x2, x3, x4, x5, x6, x7), STC0ICarryOutC2(x1, x2, x3, x4, x5, x6, x7),
STC0ICarryOutC3(x1, x2, x3, x4, x5, x6, x7)).

Let us consider sets x1, x2, x3, x4, x5, x6, x7. Now we state the propositions:

(21) InnerVertices(STC0Str(x1, x2, x3, x4, x5, x6, x7)) =
InnerVertices(STC0IStr(x1, x2, x3, x4, x5, x6, x7))∪
{〈〈〈STC0ICarryOutC1(x1, x2, x3, x4, x5, x6, x7), STC0ICarryOutC2(x1, x2,
x3, x4, x5, x6, x7)〉, xor2 〉〉,GFA0AdderOutput(STC0ICarryOutC1(x1, x2,
x3, x4, x5, x6, x7), STC0ICarryOutC2(x1, x2, x3, x4, x5, x6, x7), STC0ICa−
rryOutC3(x1, x2, x3, x4, x5, x6, x7))}∪

{〈〈〈STC0ICarryOutC1(x1, x2, x3, x4, x5, x6, x7), STC0ICarryOutC2(x1, x2,
x3, x4, x5, x6, x7)〉, and2 〉〉, 〈〈〈STC0ICarryOutC2(x1, x2, x3, x4, x5, x6, x7),
STC0ICarryOutC3(x1, x2, x3, x4, x5, x6, x7)〉, and2 〉〉, 〈〈〈STC0ICarryOut
C3(x1, x2, x3, x4, x5, x6, x7),STC0ICarryOutC1(x1, x2, x3, x4, x5, x6, x7)〉,
and2 〉〉,GFA0CarryOutput(STC0ICarryOutC1(x1, x2, x3, x4, x5, x6, x7),
STC0ICarryOutC2(x1, x2, x3, x4, x5, x6, x7), STC0ICarryOutC3(x1, x2,
x3, x4, x5, x6, x7))}.

(22) InnerVertices(STC0Str(x1, x2, x3, x4, x5, x6, x7)) = {〈〈〈x1, x2〉, xor2 〉〉,
GFA0AdderOutput(x1, x2, x3)}∪ {〈〈〈x1, x2〉, and2 〉〉, 〈〈〈x2, x3〉, and2 〉〉, 〈〈〈x3,
x1〉, and2 〉〉,GFA0CarryOutput(x1, x2, x3)}∪{〈〈〈x5, x6〉, xor2 〉〉,GFA0Adder
Output(x5, x6, x7)} ∪ {〈〈〈x5, x6〉, and2 〉〉, 〈〈〈x6, x7〉, and2 〉〉, 〈〈〈x7, x5〉, and2 〉〉,
GFA0CarryOutput(x5, x6, x7)}∪{〈〈〈GFA0AdderOutput(x1, x2, x3),GFA0
AdderOutput(x5, x6, x7)〉, xor2 〉〉,GFA0AdderOutput(GFA0AdderOutput
(x1, x2, x3),GFA0AdderOutput(x5, x6, x7), x4)} ∪ {〈〈〈GFA0AdderOutput
(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉, and2 〉〉, 〈〈〈GFA0AdderOutput
(x5, x6, x7), x4〉, and2 〉〉, 〈〈〈x4,GFA0AdderOutput(x1, x2, x3)〉, and2 〉〉,GFA0
CarryOutput(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7),
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x4)} ∪ {〈〈〈GFA0CarryOutput(x1, x2, x3),GFA0CarryOutput(x5, x6, x7)〉,
xor2 〉〉, GFA0AdderOutput(GFA0CarryOutput(x1, x2, x3),GFA0Carry
Output(x5, x6, x7), GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),
GFA0AdderOutput(x5, x6, x7), x4))} ∪ {〈〈〈GFA0CarryOutput(x1, x2, x3),
GFA0CarryOutput(x5, x6, x7)〉, and2 〉〉, 〈〈〈GFA0CarryOutput(x5, x6, x7),
GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3), GFA0AdderOutput
(x5, x6, x7), x4)〉, and2 〉〉, 〈〈〈GFA0CarryOutput(GFA0AdderOutput(x1, x2,
x3),GFA0AdderOutput(x5, x6, x7), x4), GFA0CarryOutput(x1, x2, x3)〉,
and2 〉〉, GFA0CarryOutput(GFA0CarryOutput(x1, x2, x3), GFA0Carry
Output(x5, x6, x7), GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),
GFA0AdderOutput(x5, x6, x7), x4))}. The theorem is a consequence of (21)
and (10).

(23) InnerVertices(STC0Str(x1, x2, x3, x4, x5, x6, x7)) is a binary relation.

Let us consider non pair sets x1, x2, x3, x4, x5, x6, x7.

(24) InputVertices(STC0Str(x1, x2, x3, x4, x5, x6, x7)) = {x1, x2, x3, x4, x5, x6,
x7}. The theorem is a consequence of (10), (14), and (13).

(25) InputVertices(STC0Str(x1, x2, x3, x4, x5, x6, x7)) has no pairs. The the-
orem is a consequence of (24).

Let us consider sets x1, x2, x3, x4, x5, x6, x7.

(26) x1, x2, x3, x4, x5, x6, x7, 〈〈〈x1, x2〉, xor2 〉〉, 〈〈〈x1, x2〉, and2 〉〉, 〈〈〈x2, x3〉,
and2 〉〉, 〈〈〈x3, x1〉, and2 〉〉, 〈〈〈x5, x6〉, xor2 〉〉, 〈〈〈x5, x6〉, and2 〉〉, 〈〈〈x6, x7〉, and2 〉〉,
〈〈〈x7, x5〉, and2 〉〉, GFA0AdderOutput(x1, x2, x3), GFA0CarryOutput(x1, x2,
x3), GFA0AdderOutput(x5, x6, x7), GFA0CarryOutput(x5, x6, x7), 〈〈〈GFA0
AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉, xor2 〉〉, 〈〈〈GFA0Ad
derOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7)〉, and2 〉〉, 〈〈〈GFA0Add
erOutput(x5, x6, x7), x4〉, and2 〉〉,〈〈〈x4,GFA0AdderOutput(x1, x2, x3)〉, and2〉〉
∈ the carrier of STC0Str(x1, x2, x3, x4, x5, x6, x7).

And also GFA0AdderOutput(GFA0AdderOutput(x1, x2, x3),GFA0Add
erOutput(x5, x6, x7), x4),GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),
GFA0AdderOutput(x5, x6, x7), x4), 〈〈〈GFA0CarryOutput(x1, x2, x3),GFA0
CarryOutput(x5, x6, x7)〉, xor2 〉〉,GFA0AdderOutput(GFA0CarryOutput(x1,
x2, x3),GFA0CarryOutput(x5, x6, x7),GFA0CarryOutput(GFA0AdderOut−
put(x1, x2, x3),GFA0AdderOuput(x5, x6, x7), x4)), 〈〈〈GFA0CarryOutput(x1,
x2, x3),GFA0CarryOutput(x5, x6, x7)〉, and2 〉〉, 〈〈〈GFA0CarryOutput(x5, x6,
x7),GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput
(x5,x6,x7), x4)〉, and2 〉〉,〈〈〈GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),
GFA0AdderOutput(x5, x6, x7), x4),GFA0CarryOutput(x1, x2, x3)〉, and2 〉〉,
GFA0CarryOutput(GFA0CarryOutput(x1, x2, x3),GFA0CarryOutput(x5,
x6, x7),GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),GFA0AdderOut
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put(x5, x6, x7), x4)) ∈ the carrier of STC0Str(x1, x2, x3, x4, x5, x6, x7).
The theorem is a consequence of (15).

(27) 〈〈〈x1, x2〉, xor2 〉〉, 〈〈〈x1, x2〉, and2 〉〉, 〈〈〈x2, x3〉, and2 〉〉, 〈〈〈x3, x1〉, and2 〉〉, 〈〈〈x5,
x6〉, xor2 〉〉, 〈〈〈x5, x6〉, and2 〉〉, 〈〈〈x6, x7〉, and2 〉〉, 〈〈〈x7, x5〉, and2 〉〉, GFA0Add
erOutput(x1, x2, x3), GFA0CarryOutput(x1, x2, x3), GFA0AdderOutput
(x5, x6, x7), GFA0CarryOutput(x5, x6, x7), 〈〈〈GFA0AdderOutput(x1, x2,
x3),GFA0AdderOutput(x5,x6, x7)〉,xor2 〉〉, 〈〈〈GFA0AdderOutput(x1,x2, x3),
GFA0AdderOutput(x5, x6, x7)〉, and2 〉〉, 〈〈〈GFA0AdderOutput(x5, x6, x7),
x4〉, and2 〉〉, 〈〈〈x4,GFA0AdderOutput(x1, x2, x3)〉, and2 〉〉, GFA0AdderOut
put(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7), x4)
GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5,
x6,x7),x4), 〈〈〈GFA0CarryOutput(x1,x2, x3),GFA0CarryOutput(x5,x6, x7)〉,
xor2 〉〉, GFA0AdderOutput(GFA0CarryOutput(x1, x2, x3),GFA0CarryOut
put(x5, x6, x7), GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3), GFA0
Adder Output(x5, x6, x7), x4)) ∈ InnerVertices(STC0Str(x1, x2, x3, x4, x5,
x6, x7)).

And also 〈〈〈GFA0CarryOutput(x1, x2, x3),GFA0CarryOutput
(x5, x6, x7)〉, and2 〉〉, 〈〈〈GFA0CarryOutput(x5, x6, x7),GFA0CarryOutput
(GFA0AdderOutput(x1,x2, x3),GFA0AdderOutput(x5, x6, x7), x4)〉, and2 〉〉,
〈〈〈GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput
(x5, x6, x7), x4),GFA0CarryOutput(x1, x2, x3)〉, and2 〉〉, GFA0CarryOutput
(GFA0CarryOutput(x1, x2, x3),GFA0CarryOutput(x5, x6, x7),GFA0Carry
Output(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput(x5, x6, x7), x4))
∈ Inner Vertices(STC0Str(x1, x2, x3, x4, x5, x6, x7)). The theorem is a con-
sequence of (22).

(28) Let us consider non pair sets x1, x2, x3, x4, x5, x6, x7. Then x1, x2,
x3, x4, x5, x6, x7 ∈ InputVertices(STC0Str(x1, x2, x3, x4, x5, x6, x7)). The
theorem is a consequence of (24).

Let x1, x2, x3, x4, x5, x6, x7 be sets. The functors: STC0OutS0(x1, x2, x3, x4,
x5, x6, x7), STC0OutS1(x1, x2, x3, x4, x5, x6, x7), and STC0OutS2(x1, x2, x3,
x4, x5, x6, x7) yielding elements of InnerVertices(STC0Str(x1, x2, x3, x4, x5, x6,
x7)) are defined by terms

(Def. 15) GFA0AdderOutput(GFA0AdderOutput(x1, x2, x3),GFA0AdderOutput
(x5, x6, x7), x4),

(Def. 16) GFA0AdderOutput(GFA0CarryOutput(x1, x2, x3),GFA0CarryOutput
(x5, x6, x7),GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),GFA0Ad−
derOutput(x5, x6, x7), x4)),

(Def. 17) GFA0CarryOutput(GFA0CarryOutput(x1, x2, x3),GFA0CarryOutput
(x5, x6, x7),GFA0CarryOutput(GFA0AdderOutput(x1, x2, x3),GFA0Ad−
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derOutput(x5, x6, x7), x4)),

respectively. Now we state the propositions:

(29) Let us consider non pair sets x1, x2, x3, x4, x5, x6, x7, a state s of
STC0Circ(x1, x2, x3, x4, x5, x6, x7), and elements a1, a2, a3, a4, a5, a6, a7
of Boolean. Suppose a1 = s(x1) and a2 = s(x2) and a3 = s(x3) and
a4 = s(x4) and a5 = s(x5) and a6 = s(x6) and a7 = s(x7). Then

(i) (Following(s, 4))(STC0OutS0(x1, x2, x3, x4, x5, x6, x7)) =

(((((a1 ⊕ a2)⊕ a3)⊕ a4)⊕ a5)⊕ a6)⊕ a7, and

(ii) (Following(s, 6))(STC0OutS1(x1, x2, x3, x4, x5, x6, x7)) = (((a1∧a2∨
a2 ∧ a3) ∨ a3 ∧ a1)⊕ ((a5 ∧ a6 ∨ a6 ∧ a7) ∨ a7 ∧ a5))⊕ ((((a1 ⊕ a2)⊕
a3)∧ ((a5 ⊕ a6)⊕ a7)∨ ((a5 ⊕ a6)⊕ a7)∧ a4)∨ a4 ∧ ((a1 ⊕ a2)⊕ a3)),
and

(iii) (Following(s, 6))(STC0OutS2(x1, x2, x3, x4, x5, x6, x7)) = (((a1∧a2∨
a2∧a3)∨a3∧a1)∧ ((a5∧a6∨a6∧a7)∨a7∧a5)∨ ((a5∧a6∨a6∧a7)∨
a7∧a5)∧ ((((a1⊕a2)⊕a3)∧ ((a5⊕a6)⊕a7)∨ ((a5⊕a6)⊕a7)∧a4)∨
a4 ∧ ((a1 ⊕ a2)⊕ a3)))∨ ((((a1 ⊕ a2)⊕ a3)∧ ((a5 ⊕ a6)⊕ a7)∨ ((a5 ⊕
a6)⊕ a7)∧ a4)∨ a4 ∧ ((a1⊕ a2)⊕ a3))∧ ((a1 ∧ a2 ∨ a2 ∧ a3)∨ a3 ∧ a1),
and

(iv) (Following(s, 6))(x1) = a1, and

(v) (Following(s, 6))(x2) = a2, and

(vi) (Following(s, 6))(x3) = a3, and

(vii) (Following(s, 6))(x4) = a4, and

(viii) (Following(s, 6))(x5) = a5, and

(ix) (Following(s, 6))(x6) = a6, and

(x) (Following(s, 6))(x7) = a7.

(30) Let us consider non pair sets x1, x2, x3, x4, x5, x6, x7, and a state s
of STC0Circ(x1, x2, x3, x4, x5, x6, x7). Then Following(s, 6) is stable. The
theorem is a consequence of (20).
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