
FORMALIZED MATHEMATICS

Vol. 28, No. 1, Pages 23–39, 2020
DOI: 10.2478/forma-2020-0003 https://www.sciendo.com/

Miscellaneous Graph Preliminaries

Sebastian Koch
Johannes Gutenberg University

Mainz, Germany1

Summary. This article contains many auxiliary theorems which were mis-
sing in the Mizar Mathematical Library [2] to the best of the author’s knowledge.
Most of them regard graph theory as formalized in the GLIB series (cf. [8]) and
most of them are preliminaries needed in [7] or other forthcoming articles.

MSC: 05C07 68V20

Keywords: graph theory; vertex degrees

MML identifier: GLIBPRE0, version: 8.1.09 5.60.1371

0. Introduction

A generalized approach to graph theory as it was done in [3, 5] in contrast
to [9], [4] is rather uncommon. To avoid duplication of the same theorems in
different formalization frameworks in the Mizar Mathematical Library [1], a
generalized approach to formalization is preferable (cf. [8], [6]). However, due
to the sheer amount of “obvious facts” such an approach brings with it, it is
only natural some of them not immediately needed slip the initial formalization
process. This article aims to fill some of the gaps that emerged. Thereby, in
most cases, preliminaries needed in [7] are provided.

Many theorems in this article regard the change of incident edge sets and
degrees of a vertex when going from one graph to a related one (e.g. when
reversing edge directions or adding an edge).

1The author is enrolled in the Johannes Gutenberg University in Mayence, Germany, mailto:
skoch02@students.uni-mainz.de

c© 2020 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)23

https://content.sciendo.com/view/journals/forma/forma-overview.xml
https://orcid.org/0000-0002-9628-177X
http://zbmath.org/classification/?q=cc:05C07
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/glibpre0.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/

24 sebastian koch

1. Preliminaries not Directly Related to Graphs

Let us consider sets X, Y, Z. Now we state the propositions:

(1) If Z ⊆ X, then X ∪ Y \ Z = X ∪ Y.
(2) X ∩ Z misses Y \ Z.

(3) Let us consider objects x, y. Then {x, y} \ {the element of {x, y}} = ∅ if
and only if x = y.

Let us consider objects a, b, x, y. Now we state the propositions:

(4) Suppose a 6= b and x = the element of {a, b} and y = the element of
{a, b} \ {the element of {a, b}}. Then

(i) x = a and y = b, or

(ii) x = b and y = a.

(5) {a, b} = {x, y} if and only if x = a and y = b or x = b and y = a.

(6) Let us consider a set X, and a non empty set Y. Then X ⊂ Y if and
only if X is a proper subset of Y.

Let X be a non empty set. One can check that idX is non irreflexive and
X × X is non irreflexive and non asymmetric and there exists a binary relation
on X which is non irreflexive and non asymmetric and there exists a binary
relation on X which is symmetric, irreflexive, and non total and there exists
a binary relation on X which is symmetric, non irreflexive, and non empty.

LetX be a non trivial set. Observe that idX is non connected and there exists
a binary relation on X which is symmetric and non connected and X × X
is non antisymmetric and there exists a binary relation on X which is non
antisymmetric.

Now we state the propositions:

(7) Let us consider binary relations R, S, and a set X. Then (R ∪ S)◦X =
R◦X ∪ S◦X.

(8) Let us consider binary relations R, S, and a set Y. Then (R∪S)−1(Y) =
R−1(Y) ∪ S−1(Y).

(9) Let us consider a binary relation R, and sets X, Y. Then (Y �R)�X =
(Y �R) ∩ (R�X).

(10) Let us consider a symmetric binary relation R, and an object x. Then
R◦x = Coim(R, x).

(11) Let us consider a set X, and a binary relation R on X. Then R is
irreflexive if and only if idX misses R.

(12) Let us consider objects x, y. Then ({〈〈x, y〉〉} qua binary relation)` = {〈〈y,
x〉〉}.

Miscellaneous graph preliminaries 25

(13) Let us consider a set X, objects x, y, and a symmetric binary relation
R on X. If 〈〈x, y〉〉 ∈ R, then 〈〈y, x〉〉 ∈ R.

Let a, b be cardinal numbers. Note that a∩b is cardinal and a∪b is cardinal.
Let X be a ⊆-linear set. One can check that ⊆X is connected and 〈X,⊆〉 is

connected.
Now we state the propositions:

(14) Let us consider a non empty set X. Suppose for every set a such that
a ∈ X holds a is a cardinal number. Then there exists a cardinal number
A such that

(i) A ∈ X, and

(ii) A =
⋂
X.

Proof: Define P[ordinal number] ≡ $1 ∈ X and $1 is a cardinal num-
ber. There exists an ordinal number A such that P[A]. Consider A being
an ordinal number such that P[A] and for every ordinal number B such
that P[B] holds A ⊆ B. �

(15) Let us consider a set X. Suppose for every set a such that a ∈ X holds
a is a cardinal number. Then

⋂
X is a cardinal number. The theorem is

a consequence of (14).

Let f be a cardinal yielding function and x be an object. Note that f(x) is
cardinal.

Let X be a functional set. Note that
⋂
X is function-like and relation-like.

Now we state the propositions:

(16) Let us consider a set X. Then 4 ⊆ X if and only if there exist objects
w, x, y, z such that w, x, y, z ∈ X and w 6= x and w 6= y and w 6= z and
x 6= y and x 6= z and y 6= z.
Proof: If 4 ⊆ X , then there exist objects w, x, y, z such that w, x, y,
z ∈ X and w 6= x and w 6= y and w 6= z and x 6= y and x 6= z and y 6= z.
�

(17) Let us consider a set X. Suppose 4 ⊆ X . Let us consider objects w, x,
y. Then there exists an object z such that

(i) z ∈ X, and

(ii) w 6= z, and

(iii) x 6= z, and

(iv) y 6= z.

The theorem is a consequence of (16).

(18) Let us consider a set X. Then SX misses 2SetX.

26 sebastian koch

(19) Let us consider sets X, Y. Suppose X = Y . Then 2SetX = 2SetY .
Proof: Consider g being a function such that g is one-to-one and dom g =
X and rng g = Y. Define K(set) = the element of $1. Define L(set) =
the element of $1\{K($1)}. Define F(object) = {g(K($1(∈ 2X))), g(L($1(∈
2X)))}. Consider f being a function such that dom f = 2SetX and for
every object x such that x ∈ 2SetX holds f(x) = F(x). �

(20) Let us consider a finite set X. Then 2SetX =

(
X

2

)
. The theorem is

a consequence of (19).

2. Into GLIB 000

Now we state the propositions:

(21) Let us consider a graph G, a vertex v of G, and objects e, w. If v is
isolated, then e does not join v and w in G.

(22) Let us consider a graph G, a vertex v of G, and objects e, w. Suppose v
is isolated. Then

(i) e does not join v to w in G, and

(ii) e does not join w to v in G.

The theorem is a consequence of (21).

(23) Let us consider a graph G, and a vertex v of G. Then v is isolated if and
only if v /∈ rng(the source of G) ∪ rng(the target of G). The theorem is
a consequence of (22).

(24) Let us consider a graph G, a vertex v of G, and an object e. If v is
endvertex, then e does not join v and v in G.

(25) Let us consider a graph G, and a vertex v of G. Then

(i) v.edgesIn() = (the target of G)−1({v}), and

(ii) v.edgesOut() = (the source of G)−1({v}).

Let us consider a trivial graph G and a vertex v of G. Now we state the
propositions:

(26) (i) v.edgesIn() = the edges of G, and

(ii) v.edgesOut() = the edges of G, and

(iii) v.edgesInOut() = the edges of G.

(27) (i) v.inDegree() = G.size(), and

(ii) v.outDegree() = G.size(), and

Miscellaneous graph preliminaries 27

(iii) v.degree() = G.size() +G.size().
The theorem is a consequence of (26).

(28) Let us consider a graph G, and setsX, Y. Then G.edgesBetween(X,Y) =
G.edgesDBetween(X,Y) ∪G.edgesDBetween(Y,X).

(29) Let us consider a graph G, and a vertex v of G. Then v.edgesInOut() =
G.edgesBetween(the vertices of G, {v}). The theorem is a consequence of
(28).

Let us consider a graph G and sets X, Y. Now we state the propositions:

(30) G.edgesDBetween(X,Y) = G.edgesOutOf(X) ∩G.edgesInto(Y).

(31) G.edgesDBetween(X,Y) ⊆ G.edgesBetween(X,Y).

Let us consider a graph G and a vertex v of G. Now we state the propositions:

(32) If for every object e, e does not join v and v in G, then v.edgesInOut() =
v.degree().
Proof: v.edgesIn() ∩ v.edgesOut() = ∅. �

(33) v is isolated if and only if v.edgesIn() = ∅ and v.edgesOut() = ∅.
(34) v is isolated if and only if v.inDegree() = 0 and v.outDegree() = 0. The

theorem is a consequence of (33).

(35) v is isolated if and only if v.degree() = 0. The theorem is a consequence
of (34).

Let us consider a graph G and a set X. Now we state the propositions:

(36) G.edgesInto(X) =
⋃
{v.edgesIn(), where v is a vertex of G : v ∈ X}.

(37) G.edgesOutOf(X) =
⋃
{v.edgesOut(), where v is a vertex of G : v ∈

X}.
(38) G.edgesInOut(X) =

⋃
{v.edgesInOut(), where v is a vertex of G : v ∈

X}.
Let us consider a graph G and sets X, Y. Now we state the propositions:

(39) G.edgesDBetween(X,Y) =
⋃
{v.edgesOut()∩w.edgesIn(), where v, w are

vertices of G : v ∈ X and w ∈ Y }.
(40) G.edgesBetween(X,Y) ⊆

⋃
{v.edgesInOut() ∩ w.edgesInOut(), where

v, w are vertices of G : v ∈ X and w ∈ Y }.
(41) SupposeX misses Y. ThenG.edgesBetween(X,Y) =

⋃
{v.edgesInOut()∩

w.edgesInOut(), where v, w are vertices of G : v ∈ X and w ∈ Y }. The
theorem is a consequence of (40).

(42) Let us consider a graph G1, a set E, a subgraph G2 of G1 with edges E
removed, a vertex v1 of G1, and a vertex v2 of G2. Suppose v1 = v2. Then

(i) v2.edgesIn() = v1.edgesIn() \ E, and

(ii) v2.edgesOut() = v1.edgesOut() \ E, and

28 sebastian koch

(iii) v2.edgesInOut() = v1.edgesInOut() \ E.

(43) Let us consider graphs G1, G2, and a set V . Then G2 is a subgraph of
G1 with vertices V removed if and only if G2 is a subgraph of G1 with
vertices V ∩ (the vertices of G1) removed.

(44) Let us consider a graph G1, a set V , a subgraph G2 of G1 with ver-
tices V removed, a vertex v1 of G1, and a vertex v2 of G2. Suppose
V ⊂ the vertices of G1 and v1 = v2. Then

(i) v2.edgesIn() = v1.edgesIn() \ (G1.edgesOutOf(V)), and

(ii) v2.edgesOut() = v1.edgesOut() \ (G1.edgesInto(V)), and

(iii) v2.edgesInOut() = v1.edgesInOut() \ (G1.edgesInOut(V)).

Proof: v1.edgesOut()∩G1.edgesOutOf(V) = ∅. v1.edgesIn()∩G1.edgesInto
(V) = ∅. �

(45) Let us consider a non trivial graph G1, a vertex v of G1, a subgraph G2
of G1 with vertex v removed, a vertex v1 of G1, and a vertex v2 of G2.
Suppose v1 = v2. Then

(i) v2.edgesIn() = v1.edgesIn() \ (v.edgesOut()), and

(ii) v2.edgesOut() = v1.edgesOut() \ (v.edgesIn()), and

(iii) v2.edgesInOut() = v1.edgesInOut() \ (v.edgesInOut()).

The theorem is a consequence of (44).

3. Into GLIB 002

Now we state the proposition:

(46) Let us consider a graph G, a component C of G, a vertex v1 of G, and
a vertex v2 of C. Suppose v1 = v2. Then

(i) v1.edgesIn() = v2.edgesIn(), and

(ii) v1.inDegree() = v2.inDegree(), and

(iii) v1.edgesOut() = v2.edgesOut(), and

(iv) v1.outDegree() = v2.outDegree(), and

(v) v1.edgesInOut() = v2.edgesInOut(), and

(vi) v1.degree() = v2.degree().

Miscellaneous graph preliminaries 29

4. Into GLIB 006

Now we state the propositions:

(47) Let us consider a graph G2, a set V , a supergraph G1 of G2 extended
by the vertices from V , a vertex v1 of G1, and a vertex v2 of G2. Suppose
v1 = v2. Then

(i) v1.edgesIn() = v2.edgesIn(), and

(ii) v1.inDegree() = v2.inDegree(), and

(iii) v1.edgesOut() = v2.edgesOut(), and

(iv) v1.outDegree() = v2.outDegree(), and

(v) v1.edgesInOut() = v2.edgesInOut(), and

(vi) v1.degree() = v2.degree().

(48) Let us consider a graph G2, objects v, w, e, a supergraph G1 of G2
extended by e between vertices v and w, a vertex v1 of G1, and a vertex
v2 of G2. Suppose v1 = v2 and v2 6= v and v2 6= w. Then

(i) v1.edgesIn() = v2.edgesIn(), and

(ii) v1.inDegree() = v2.inDegree(), and

(iii) v1.edgesOut() = v2.edgesOut(), and

(iv) v1.outDegree() = v2.outDegree(), and

(v) v1.edgesInOut() = v2.edgesInOut(), and

(vi) v1.degree() = v2.degree().

(49) Let us consider a graph G2, vertices v, w of G2, an object e, a supergraph
G1 of G2 extended by e between vertices v and w, and a vertex v1 of G1.
Suppose e /∈ the edges of G2 and v1 = v and v 6= w. Then

(i) v1.edgesIn() = v.edgesIn(), and

(ii) v1.inDegree() = v.inDegree(), and

(iii) v1.edgesOut() = v.edgesOut() ∪ {e}, and

(iv) v1.outDegree() = v.outDegree() + 1, and

(v) v1.edgesInOut() = v.edgesInOut() ∪ {e}, and

(vi) v1.degree() = v.degree() + 1.

(50) Let us consider a graph G2, vertices v, w of G2, an object e, a supergraph
G1 of G2 extended by e between vertices v and w, and a vertex w1 of G1.
Suppose e /∈ the edges of G2 and w1 = w and v 6= w. Then

(i) w1.edgesIn() = w.edgesIn() ∪ {e}, and

30 sebastian koch

(ii) w1.inDegree() = w.inDegree() + 1, and

(iii) w1.edgesOut() = w.edgesOut(), and

(iv) w1.outDegree() = w.outDegree(), and

(v) w1.edgesInOut() = w.edgesInOut() ∪ {e}, and

(vi) w1.degree() = w.degree() + 1.

(51) Let us consider a graph G2, a vertex v of G2, an object e, a supergraph
G1 of G2 extended by e between vertices v and v, and a vertex v1 of G1.
Suppose e /∈ the edges of G2 and v1 = v. Then

(i) v1.edgesIn() = v.edgesIn() ∪ {e}, and

(ii) v1.inDegree() = v.inDegree() + 1, and

(iii) v1.edgesOut() = v.edgesOut() ∪ {e}, and

(iv) v1.outDegree() = v.outDegree() + 1, and

(v) v1.edgesInOut() = v.edgesInOut() ∪ {e}, and

(vi) v1.degree() = v.degree() + 2.

5. Into GLIB 007

Now we state the propositions:

(52) Let us consider a graph G3, a set E, a graph G4 given by reversing
directions of the edges E of G3, a supergraph G1 of G3, and a graph G2
given by reversing directions of the edges E of G1. Suppose E ⊆ the edges
of G3. Then G2 is a supergraph of G4.

(53) Let us consider a graph G2, and an object v. Then every supergraph of
G2 extended by v is a supergraph of G2 extended by vertex v and edges
between v and ∅ of G2.

(54) Let us consider a graph G1, a set E, a graph G2 given by reversing
directions of the edges E of G1, a vertex v1 of G1, and a vertex v2 of G2.
Suppose v1 = v2 and E ⊆ the edges of G1. Then

(i) v2.edgesIn() = v1.edgesIn() \ E ∪ v1.edgesOut() ∩ E, and

(ii) v2.edgesOut() = v1.edgesOut() \ E ∪ v1.edgesIn() ∩ E.

(55) Let us consider a graph G1, a graph G2 given by reversing directions of
the edges of G1, a vertex v1 of G1, and a vertex v2 of G2. Suppose v1 = v2.
Then

(i) v2.edgesIn() = v1.edgesOut(), and

(ii) v2.inDegree() = v1.outDegree(), and

Miscellaneous graph preliminaries 31

(iii) v2.edgesOut() = v1.edgesIn(), and

(iv) v2.outDegree() = v1.inDegree().

(56) Let us consider a graph G1, a set E, a graph G2 given by reversing
directions of the edges E of G1, a vertex v1 of G1, and a vertex v2 of G2.
Suppose v1 = v2. Then

(i) v2.edgesInOut() = v1.edgesInOut(), and

(ii) v2.degree() = v1.degree().

The theorem is a consequence of (54) and (2).

(57) Let us consider a graph G2, an object v, a set V , a supergraph G1 of
G2 extended by vertex v and edges between v and V of G2, and a vertex
w of G1. Suppose V ⊆ the vertices of G2 and v /∈ the vertices of G2 and
v = w. Then

(i) w.allNeighbors() = V , and

(ii) w.degree() = V .

The theorem is a consequence of (29), (32), and (35).

(58) Let us consider a graph G2, an object v, a set V , a supergraph G1 of G2
extended by vertex v and edges between v and V of G2, a vertex v1 of G1,
and a vertex v2 of G2. Suppose v1 = v2 and v2 /∈ V . Then

(i) v1.edgesIn() = v2.edgesIn(), and

(ii) v1.inDegree() = v2.inDegree(), and

(iii) v1.edgesOut() = v2.edgesOut(), and

(iv) v1.outDegree() = v2.outDegree(), and

(v) v1.edgesInOut() = v2.edgesInOut(), and

(vi) v1.degree() = v2.degree().

(59) Let us consider a graph G2, an object v, a subset V of the vertices of G2,
a supergraph G1 of G2 extended by vertex v and edges between v and V
of G2, a vertex v1 of G1, and a vertex v2 of G2. Suppose v /∈ the vertices
of G2 and v1 = v2 and v2 ∈ V . Then

(i) v1.allNeighbors() = v2.allNeighbors() ∪ {v}, and

(ii) v1.degree() = v2.degree() + 1.

(60) Let us consider a graph G2, an object v, a set V , a supergraph G1 of G2
extended by vertex v and edges between v and V of G2, a vertex v1 of G1,
and a vertex v2 of G2. Suppose v1 = v2. Then

(i) v1.degree() ⊆ v2.degree() + 1, and

32 sebastian koch

(ii) v1.inDegree() ⊆ v2.inDegree() + 1, and

(iii) v1.outDegree() ⊆ v2.outDegree() + 1.

The theorem is a consequence of (58).

6. Into GLIB 008

Now we state the propositions:

(61) Let us consider a graph G. Then G is edgeless if and only if for every
vertices v, w of G, v and w are not adjacent.

(62) Let us consider a loopless graph G. Then G is edgeless if and only if for
every vertices v, w of G such that v 6= w holds v and w are not adjacent.
The theorem is a consequence of (61).

7. Into GLIB 009

Now we state the propositions:

(63) Let us consider a graph G. Then G.loops() = dom((the source of G) ∩
(the target of G)).

(64) Let us consider graphs G1, G2, and a set E. Then G2 is a graph given
by reversing directions of the edges E of G1 if and only if G2 is a graph
given by reversing directions of the edges E \ (G1.loops()) of G1.

(65) Let us consider a graph G1, a subgraph G2 of G1 with loops removed,
a vertex v1 of G1, and a vertex v2 of G2. Suppose v1 = v2. Then

(i) v2.inNeighbors() = v1.inNeighbors() \ {v1}, and

(ii) v2.outNeighbors() = v1.outNeighbors() \ {v1}, and

(iii) v2.allNeighbors() = v1.allNeighbors() \ {v1}.
(66) Let us consider a graph G1, a subgraph G2 of G1 with parallel edges

removed, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then
v2.allNeighbors() = v1.allNeighbors().

(67) Let us consider a graph G1, a subgraph G2 of G1 with directed-parallel
edges removed, a vertex v1 of G1, and a vertex v2 of G2. Suppose v1 = v2.
Then

(i) v2.inNeighbors() = v1.inNeighbors(), and

(ii) v2.outNeighbors() = v1.outNeighbors(), and

(iii) v2.allNeighbors() = v1.allNeighbors().

Miscellaneous graph preliminaries 33

(68) Let us consider a graph G1, a simple graph G2 of G1, a vertex v1 of
G1, and a vertex v2 of G2. Suppose v1 = v2. Then v2.allNeighbors() =
v1.allNeighbors() \ {v1}. The theorem is a consequence of (65) and (66).

(69) Let us consider a graph G1, a directed-simple graph G2 of G1, a vertex
v1 of G1, and a vertex v2 of G2. Suppose v1 = v2. Then

(i) v2.inNeighbors() = v1.inNeighbors() \ {v1}, and

(ii) v2.outNeighbors() = v1.outNeighbors() \ {v1}, and

(iii) v2.allNeighbors() = v1.allNeighbors() \ {v1}.
The theorem is a consequence of (65) and (67).

Let G be a non loopless graph. One can verify that every subgraph of G with
parallel edges removed is non loopless and every subgraph of G with directed-
parallel edges removed is non loopless.

Let G be a non edgeless graph. Note that every subgraph of G with parallel
edges removed is non edgeless and every subgraph of G with directed-parallel
edges removed is non edgeless.

Now we state the propositions:

(70) Let us consider a graph G, and a representative selection of the parallel

edges E of G. Then E = Classes EdgeParEqRel(G).
Proof: Define F(object) = [$1]EdgeParEqRel(G). Consider f being a func-
tion such that dom f = E and for every object x such that x ∈ E holds
f(x) = F(x). �

(71) Let us consider a graph G, and a representative selection of the directed-

parallel edges E of G. Then E = Classes DEdgeParEqRel(G).
Proof: Define F(object) = [$1]DEdgeParEqRel(G). Consider f being a func-
tion such that dom f = E and for every object x such that x ∈ E holds
f(x) = F(x). �

(72) Let us consider a graph G, a set X, a subset E of the edges of G, and
a graph H given by reversing directions of the edges X of G. Then E
is a representative selection of the parallel edges of G if and only if E is
a representative selection of the parallel edges of H.

(73) Let us consider a graph G, a non empty subset V of the vertices of G,
a subgraph H of G induced by V , and a representative selection of the
parallel edges E of G. Then E ∩ G.edgesBetween(V) is a representative
selection of the parallel edges of H.

(74) Let us consider a graph G, a non empty subset V of the vertices of G,
a subgraph H of G induced by V , and a representative selection of the
directed-parallel edges E of G. Then E ∩ G.edgesBetween(V) is a repre-
sentative selection of the directed-parallel edges of H.

34 sebastian koch

Let us consider a graph G, a set V , a supergraph H of G extended by the
vertices from V , and a subset E of the edges of G. Now we state the propositions:

(75) E is a representative selection of the parallel edges of G if and only if E
is a representative selection of the parallel edges of H.

(76) E is a representative selection of the directed-parallel edges of G if and
only if E is a representative selection of the directed-parallel edges of H.

Note that there exists a graph which is non non-multi and non-directed-
multi.

Let GF be a graph-yielding function. We say that GF is plain if and only if

(Def. 1) for every object x such that x ∈ domGF there exists a graph G such
that GF (x) = G and G is plain.

Let G be a plain graph. Note that 〈G〉 is plain and N 7−→ G is plain.
Let GF be a non empty, graph-yielding function. One can check that GF is

plain if and only if the condition (Def. 2) is satisfied.

(Def. 2) for every element x of domGF , GF (x) is plain.

Let GSq be a graph sequence. Note that GSq is plain if and only if the
condition (Def. 3) is satisfied.

(Def. 3) for every natural number n, GSq(n) is plain.

Observe that every graph-yielding function which is empty is also plain and
there exists a graph sequence which is plain and there exists a graph-yielding
finite sequence which is non empty and plain.

Let GF be a plain, non empty, graph-yielding function and x be an element
of domGF . Let us observe thatGF (x) is plain. LetGSq be a plain graph sequence
and x be a natural number. Let us observe that GSq(x) is plain. Let p be a plain,
graph-yielding finite sequence and n be a natural number. One can check that
p�n is plain and p�n is plain. Let m be a natural number.

Observe that smid(p,m, n) is plain and 〈p(m), . . . , p(n)〉 is plain. Let p, q
be plain, graph-yielding finite sequences. One can check that p a q is plain and
p aa q is plain. Let G1, G2 be plain graphs. Let us observe that 〈G1, G2〉 is
plain. Let G3 be a plain graph. One can verify that 〈G1, G2, G3〉 is plain.

8. Into GLIB 010

Let us consider graphs G1, G2. Now we state the propositions:

(77) If G1 ≈ G2, then there exists a partial graph mapping F from G1 to G2
such that F = idG1 and F is directed-isomorphism.

(78) If G1 ≈ G2, then G2 is G1-directed-isomorphic. The theorem is a conse-
quence of (77).

Miscellaneous graph preliminaries 35

(79) Let us consider a graph G1, a set E, and a graph G2 given by reversing
directions of the edges E of G1. Then there exists a partial graph mapping
F from G1 to G2 such that

(i) F = idG1 , and

(ii) F is isomorphism.

(80) Let us consider a graph G1, and a set E. Then every graph given by
reversing directions of the edges E of G1 is G1-isomorphic. The theorem
is a consequence of (79).

(81) Let us consider graphs G1, G2, and a partial graph mapping F from G1
to G2. Suppose F is directed-continuous and isomorphism. Then

(i) G1 is non-directed-multi iff G2 is non-directed-multi, and

(ii) G1 is directed-simple iff G2 is directed-simple.

Let us consider graphs G1, G2, a partial graph mapping F from G1 to G2,
and a vertex v of G1. Now we state the propositions:

(82) If v ∈ dom(FV), then (FE)◦(v.edgesInOut()) ⊆ (FV)/v.edgesInOut().

(83) Suppose F is directed and v ∈ dom(FV). Then

(i) (FE)◦(v.edgesIn()) ⊆ (FV)/v.edgesIn(), and

(ii) (FE)◦(v.edgesOut()) ⊆ (FV)/v.edgesOut().

(84) Suppose F is onto and semi-continuous and v ∈ dom(FV).
Then (FE)◦(v.edgesInOut()) = (FV)/v.edgesInOut(). The theorem is a con-
sequence of (82).

(85) Suppose F is onto and semi-directed-continuous and v ∈ dom(FV). Then

(i) (FE)◦(v.edgesIn()) = (FV)/v.edgesIn(), and

(ii) (FE)◦(v.edgesOut()) = (FV)/v.edgesOut().

The theorem is a consequence of (83).

(86) If F is isomorphism, then (FE)◦(v.edgesInOut()) = (FV)/v.edgesInOut().
The theorem is a consequence of (84).

(87) Suppose F is directed-isomorphism. Then

(i) (FE)◦(v.edgesIn()) = (FV)/v.edgesIn(), and

(ii) (FE)◦(v.edgesOut()) = (FV)/v.edgesOut().

The theorem is a consequence of (85).

Let G1 be a graph and G2 be an edgeless graph. Note that every partial
graph mapping from G1 to G2 is directed.

Let us consider graphs G1, G2 and a partial graph mapping F0 from G1 to
G2. Now we state the propositions:

36 sebastian koch

(88) Suppose F0E is one-to-one. Then there exists a subset E of the edges of
G2 such that for every graph G3 given by reversing directions of the edges
E of G2.

There exists a partial graph mapping F from G1 to G3 such that
F = F0 and F is directed and if F0 is not empty, then F is not empty
and if F0 is total, then F is total and if F0 is one-to-one, then F is one-
to-one and if F0 is onto, then F is onto and if F0 is semi-continuous, then
F is semi-continuous and if F0 is continuous, then F is continuous. The
theorem is a consequence of (79).

(89) Suppose F0E is one-to-one. Then there exists a subset E of the edges of
G2 such that for every graph G3 given by reversing directions of the edges
E of G2.

There exists a partial graph mapping F from G1 to G3 such that
F = F0 and F is directed and if F0 is weak subgraph embedding, then
F is weak subgraph embedding and if F0 is strong subgraph embedding,
then F is strong subgraph embedding and if F0 is isomorphism, then F is
isomorphism. The theorem is a consequence of (88).

Let us consider graphs G1, G2, a partial graph mapping F from G1 to G2,
and a vertex v of G1. Now we state the propositions:

(90) Suppose F is directed and weak subgraph embedding. Then

(i) v.inDegree() ⊆ (FV)/v.inDegree(), and

(ii) v.outDegree() ⊆ (FV)/v.outDegree().

The theorem is a consequence of (83).

(91) If F is weak subgraph embedding, then v.degree() ⊆ (FV)/v.degree().
The theorem is a consequence of (89) and (56).

(92) Suppose F is onto and semi-directed-continuous and v ∈ dom(FV). Then

(i) (FV)/v.inDegree() ⊆ v.inDegree(), and

(ii) (FV)/v.outDegree() ⊆ v.outDegree().

The theorem is a consequence of (85).

(93) If F is onto and semi-directed-continuous and v ∈ dom(FV),
then (FV)/v.degree() ⊆ v.degree(). The theorem is a consequence of (92).

(94) If F is directed-isomorphism, then v.inDegree() = (FV)/v.inDegree() and
v.outDegree() = (FV)/v.outDegree(). The theorem is a consequence of (92)
and (90).

(95) If F is isomorphism, then v.degree() = (FV)/v.degree(). The theorem is
a consequence of (89), (94), and (56).

Miscellaneous graph preliminaries 37

9. Into CHORD

Now we state the proposition:

(96) Let us consider a graph G, and vertices u, v, w of G. Suppose v is
endvertex and u 6= w. Then

(i) u and v are not adjacent, or

(ii) v and w are not adjacent.

Proof: Consider e being an object such that v.edgesInOut() = {e} and
e does not join v and v in G. Consider v′ being a vertex of G such that e
joins v and v′ in G. Consider e8 being an object such that e8 joins v and
u in G. There exists no object e′ such that e′ joins v and w in G. �

Let us consider a graph G and a vertex v of G. Now we state the propositions:

(97) Suppose 3 ⊆ G.order() and v is endvertex. Then there exist vertices u,
w of G such that

(i) u 6= v, and

(ii) w 6= v, and

(iii) u 6= w, and

(iv) u and v are adjacent, and

(v) v and w are not adjacent.

The theorem is a consequence of (96).

(98) Suppose 4 ⊆ G.order() and v is endvertex. Then there exist vertices x,
y, z of G such that

(i) v 6= x, and

(ii) v 6= y, and

(iii) v 6= z, and

(iv) x 6= y, and

(v) x 6= z, and

(vi) y 6= z, and

(vii) v and x are adjacent, and

(viii) v and y are not adjacent, and

(ix) v and z are not adjacent.

The theorem is a consequence of (97), (17), and (96).

Let GF be a graph-yielding function. We say that GF is chordal if and only
if

38 sebastian koch

(Def. 4) for every object x such that x ∈ domGF there exists a graph G such
that GF (x) = G and G is chordal.

Let G be a chordal graph. Let us note that 〈G〉 is chordal and N 7−→ G is
chordal.

Let GF be a non empty, graph-yielding function. Note that GF is chordal if
and only if the condition (Def. 5) is satisfied.

(Def. 5) for every element x of domGF , GF (x) is chordal.

Let GSq be a graph sequence. Let us note that GSq is chordal if and only if
the condition (Def. 6) is satisfied.

(Def. 6) for every natural number n, GSq(n) is chordal.

Let us observe that every graph-yielding function which is empty is also
chordal and there exists a graph sequence which is chordal and there exists
a graph-yielding finite sequence which is non empty and chordal.

Let GF be a chordal, non empty, graph-yielding function and x be an ele-
ment of domGF . One can verify that GF (x) is chordal. Let GSq be a chordal
graph sequence and x be a natural number. One can verify that GSq(x) is chor-
dal.

Let p be a chordal, graph-yielding finite sequence and n be a natural number.
Note that p�n is chordal and p�n is chordal. Let m be a natural number. Let us
observe that smid(p,m, n) is chordal and 〈p(m), . . . , p(n)〉 is chordal.

Let p, q be chordal, graph-yielding finite sequences. Note that paq is chordal
and p aa q is chordal.

Let G1, G2 be chordal graphs. One can verify that 〈G1, G2〉 is chordal. Let
G3 be a chordal graph. One can check that 〈G1, G2, G3〉 is chordal.

10. Into GLIB 011

Now we state the propositions:

(99) Let us consider non-directed-multi graphs G1, G2, a directed partial
vertex mapping f from G1 to G2, and a vertex v of G1. Suppose f is
directed-isomorphism. Then

(i) v.inDegree() = f/v.inDegree(), and

(ii) v.outDegree() = f/v.outDegree().

The theorem is a consequence of (94).

(100) Let us consider non-multi graphsG1,G2, a partial vertex mapping f from
G1 to G2, and a vertex v of G1. If f is isomorphism, then v.degree() =
f/v.degree(). The theorem is a consequence of (95).

Miscellaneous graph preliminaries 39

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and
beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Vol-
ker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in
Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-
319-20614-1. doi:10.1007/978-3-319-20615-8 17.

[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library
for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32,
2018. doi:10.1007/s10817-017-9440-6.

[3] John Adrian Bondy and U. S. R. Murty. Graph Theory. Graduate Texts in Mathematics,
244. Springer, New York, 2008. ISBN 978-1-84628-969-9.

[4] Pavol Hell and Jaroslav Nesetril. Graphs and homomorphisms. Oxford Lecture Series
in Mathematics and Its Applications; 28. Oxford University Press, Oxford, 2004. ISBN
0-19-852817-5.

[5] Ulrich Knauer. Algebraic graph theory: morphisms, monoids and matrices, volume 41 of
De Gruyter Studies in Mathematics. Walter de Gruyter, 2011.

[6] Sebastian Koch. About graph mappings. Formalized Mathematics, 27(3):261–301, 2019.
doi:10.2478/forma-2019-0024.

[7] Sebastian Koch. About graph complements. Formalized Mathematics, 28(1):41–63, 2020.
doi:10.2478/forma-2020-0004.

[8] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics,
13(2):235–252, 2005.

[9] Robin James Wilson. Introduction to Graph Theory. Oliver & Boyd, Edinburgh, 1972.
ISBN 0-05-002534-1.

Accepted December 30, 2019

http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.2478/forma-2019-0024
http://dx.doi.org/10.2478/forma-2020-0004
http://fm.mizar.org/2005-13/pdf13-2/glib_000.pdf

	=0pt Miscellaneous Graph Preliminaries By Sebastian Koch

