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Klein-Beltrami model. Part III

Roland Coghetto
Rue de la Brasserie 5

7100 La Louvière, Belgium

Summary. Timothy Makarios (with Isabelle/HOL1) and John Harrison
(with HOL-Light2) shown that “the Klein-Beltrami model of the hyperbolic plane
satisfy all of Tarski’s axioms except his Euclidean axiom” [2],[3],[4],[5].

With the Mizar system [1] we use some ideas taken from Tim Makarios’s
MSc thesis [10] to formalize some definitions (like the absolute) and lemmas
necessary for the verification of the independence of the parallel postulate. In
this article we prove that our constructed model (we prefer “Beltrami-Klein”
name over “Klein-Beltrami”, which can be seen in the naming convention for
Mizar functors, and even MML identifiers) satisfies the congruence symmetry, the
congruence equivalence relation, and the congruence identity axioms formulated
by Tarski (and formalized in Mizar as described briefly in [8]).
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1. Preliminaries

Now we state the propositions:

(1) Let us consider real numbers x, y. If x · y < 0, then 0 < x
x−y < 1.

(2) Let us consider a non zero real number a, and real numbers b, r. Suppose
r =
√
a2 + b2. Then

(i) r is positive, and

1https://www.isa-afp.org/entries/Tarskis_Geometry.html
2https://github.com/jrh13/hol-light/blob/master/100/independence.ml

c© 2020 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)1

https://content.sciendo.com/view/journals/forma/forma-overview.xml
https://orcid.org/0000-0002-4901-0766
http://zbmath.org/classification/?q=cc:51A05
http://zbmath.org/classification/?q=cc:51M10
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/bkmodel3.miz
http://ftp.mizar.org/
https://www.isa-afp.org/entries/Tarskis_Geometry.html
https://github.com/jrh13/hol-light/blob/master/100/independence.ml
http://creativecommons.org/licenses/by-sa/3.0/


2 roland coghetto

(ii) (ar )
2 + ( br )

2 = 1.

(3) Let us consider a non zero real number a, and real numbers b, c, d, e.
Suppose a · b = c− d · e. Then b2 = c2

a2
− 2 · c·da·a · e+ d2

a2
· e2.

Let us consider complex numbers a, b, c. Now we state the propositions:

(4) If a 6= 0, then a
2·b·c
a2

= b · c.
(5) If a 6= 0, then 2·a

2·b·c
a2

= 2 · b · c. The theorem is a consequence of (4).

(6) Let us consider a real number a. If 1 < a, then 1a − 1 < 0.

(7) Let us consider real numbers a, b. If 0 < a and 1 < b, then ab − a < 0.
The theorem is a consequence of (6).

(8) Let us consider a non zero real number a, and real numbers b, c, d.
Suppose a2+ c2 = b2 and 1 < b2. Then (b

2)2

a2
− 2 · b2·ca·a ·d+ c

2

a2
·d2+d2 6= 1.

The theorem is a consequence of (5) and (7).

(9) Let us consider real numbers a, b, c. If a · (−b) = c and a · c = b, then
c = 0 and b = 0.

(10) Let us consider a positive real number a. Then
√
a
a = 1√

a
.

2. Planar Lemmas

Let a be a non zero real number and b, c be real numbers. Observe that [a,
b, c] is non zero as an element of E3T and [c, a, b] is non zero as an element of E3T
and [b, c, a] is non zero as an element of E3T.

Let P be an element of the real projective plane. Assume P ∈ (the absolute)∪
(the BK-model). The functor #P yielding a non zero element of E3T is defined
by

(Def. 1) the direction of it = P and it(3) = 1.

Now we state the propositions:

(11) Let us consider an element P of the real projective plane. Then there
exists an element Q of the BK-model such that P 6= Q.

From now on P denotes an element of the BK-model.

(12) There exist elements P1, P2 of the absolute such that

(i) P1 6= P2, and

(ii) P1, P and P2 are collinear.

The theorem is a consequence of (11).

(13) Let us consider an element Q of the absolute. Then there exists an ele-
ment R of the BK-model such that

(i) P 6= R, and
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(ii) P , Q and R are collinear.

(14) Let us consider a line L of Inc-ProjSp(the real projective plane). Suppose
P ∈ L. Then there exist elements P1, P2 of the absolute such that

(i) P1 6= P2, and

(ii) P1, P2 ∈ L.

Let N be an invertible square matrix over RF of dimension 3. The functor
Line-homography(N) yielding a function from the lines of Inc-ProjSp(the real
projective plane) into the lines of Inc-ProjSp(the real projective plane) is defined
by

(Def. 2) for every line x of Inc-ProjSp(the real projective plane), it(x) =
{(the homography of N)(P ), where P is a point of Inc-ProjSp(the real
projective plane) : P lies on x}.

In the sequel N , N1, N2 denote invertible square matrices over RF of dimen-
sion 3 and l, l1, l2 denote elements of the lines of Inc-ProjSp(the real projective
plane). Now we state the propositions:

(15) (Line-homography(N1))((Line-homography(N2))(l)) =
(Line-homography(N1 ·N2))(l).
Proof: Reconsider l2 = (Line-homography(N2))(l) as a line of Inc-ProjSp
(the real projective plane). {(the homography ofN1)(P ), where P is a point
of Inc-ProjSp(the real projective plane) : P lies on l2} = {(the homography
ofN1·N2)(P ), where P is a point of Inc-ProjSp(the real projective plane) :
P lies on l} by [9, (3), (4), (5)], [6, (13)]. �

(16) (Line-homography(I3×3RF ))(l) = l.

Proof: Set X = {(the homography of I3×3RF )(P ), where P is a point of
Inc-ProjSp(the real projective plane) : P lies on l}. X ⊆ l. l ⊆ X. �

(17) (i) (Line-homography(N))((Line-homography(N`))(l)) = l, and

(ii) (Line-homography(N`))((Line-homography(N))(l)) = l.
The theorem is a consequence of (15) and (16).

(18) If (Line-homography(N))(l1) = (Line-homography(N))(l2), then l1 = l2.
The theorem is a consequence of (17).

The functor SetLineHom3 yielding a set is defined by the term

(Def. 3) the set of all Line-homography(N) whereN is an invertible square matrix
over RF of dimension 3.

Observe that SetLineHom3 is non empty. Let h1, h2 be elements of SetLine-
Hom3. The functor h1 ◦ h2 yielding an element of SetLineHom3 is defined by
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(Def. 4) there exist invertible square matrices N1, N2 over RF of dimension 3
such that h1 = Line-homography(N1) and h2 = Line-homography(N2)
and it = Line-homography(N1 ·N2).

Now we state the propositions:

(19) Let us consider elements h1, h2 of SetLineHom3. Suppose h1 =
Line-homography(N1) and h2 = Line-homography(N2).
Then Line-homography(N1 ·N2) = h1 ◦ h2. The theorem is a consequence
of (15).

(20) Let us consider elements x, y, z of SetLineHom3. Then (x ◦ y) ◦ z =
x ◦ (y ◦ z). The theorem is a consequence of (19).

The functor BinOpLineHom3 yielding a binary operation on SetLineHom3
is defined by

(Def. 5) for every elements h1, h2 of SetLineHom3, it(h1, h2) = h1 ◦ h2.
The functor GroupLineHom3 yielding a strict multiplicative magma is defi-

ned by the term

(Def. 6) 〈SetLineHom3,BinOpLineHom3〉.
Let us observe that GroupLineHom3 is non empty, associative, and group-

like. Now we state the propositions:

(21) 1GroupLineHom3 = Line-homography(I3×3RF ).

(22) Let us consider elements h, g of GroupLineHom3, and invertible square
matricesN ,N1 over RF of dimension 3. Suppose h = Line-homography(N)
and g = Line-homography(N1) andN1 = N`. Then g = h−1. The theorem
is a consequence of (21).

In the sequel P denotes a point of the projective space over E3T and l denotes
a line of Inc-ProjSp(the real projective plane).

(23) If (the homography of N)(P ) ∈ l, then P ∈ (Line-homography(N`))(l).

(24) If P ∈ (Line-homography(N))(l), then (the homography of N`)(P ) ∈ l.
(25) P ∈ l if and only if (the homography of N)(P ) ∈ (Line-homography(N))

(l). The theorem is a consequence of (23) and (17).

(26) Let us consider non zero elements u, v, w of E3T. Suppose (u)3 = 1
and (v)1 = −(u)2 and (v)2 = (u)1 and (v)3 = 0 and (w)3 = 1 and
〈|u, v, w|〉 = 0. Then ((u)1)2 + ((u)2)2 − (u)1 · (w)1 − (u)2 · (w)2 = 0.

(27) Let us consider a non zero real number a, and real numbers b, c. Then
a · [ ba ,

c
a , 1] = [b, c, a].

Let us consider non zero elements u, v, w of E3T. Now we state the proposi-
tions:
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(28) Suppose (u)1 6= 0 and (u)3 = 1 and (v)1 = −(u)2 and (v)2 = (u)1 and
(v)3 = 0 and (w)3 = 1 and 〈|u, v, w|〉 = 0 and 1 < ((u)1)2+ ((u)2)2. Then
((w)1)2+ ((w)2)2 6= 1. The theorem is a consequence of (26), (2), (3), and
(8).

(29) Suppose (u)2 6= 0 and (u)3 = 1 and (v)1 = −(u)2 and (v)2 = (u)1 and
(v)3 = 0 and (w)3 = 1 and 〈|u, v, w|〉 = 0 and 1 < ((u)1)2+ ((u)2)2. Then
((w)1)2+ ((w)2)2 6= 1. The theorem is a consequence of (26), (2), (3), and
(8).

(30) Let us consider an element P of the absolute. Then there exists a non
zero element u of E3T such that

(i) u(3) = 1, and

(ii) P = the direction of u.

(31) Let us consider real numbers a, b, c, d, and non zero elements u, v
of E3T. Suppose u = [a, b, 1] and v = [c, d, 0]. Then the direction of u 6=
the direction of v.

(32) Let us consider a non zero element u of E3T. Suppose u(1)2 + u(2)2 < 1
and u(3) = 1. Then the direction of u is an element of the BK-model.

(33) Let us consider real numbers a, b. Suppose a2+b2 ¬ 1. Then the direction
of [a, b, 1] ∈ (the BK-model) ∪ (the absolute). The theorem is a consequ-
ence of (32).

(34) If P /∈ (the BK-model) ∪ (the absolute), then there exists l such that
P ∈ l and l misses the absolute. The theorem is a consequence of (9),
(30), (27), (31), (33), (28), and (29).

(35) Let us consider a point P of the real projective plane, an element h of
the subgroup of K-isometries, and an invertible square matrix N over RF
of dimension 3. Suppose h = the homography of N . Then P is an element
of the absolute if and only if (the homography of N)(P ) is an element of
the absolute.

Let us consider an element P of the BK-model, an element h of the subgroup
of K-isometries, and an invertible square matrix N over RF of dimension 3.

(36) If h = the homography of N , then (the homography of N)(P ) is an ele-
ment of the BK-model.
Proof: Set h1 = (the homography of N)(P ). h1 is not an element of
the absolute by (35), [7, (1)]. Consider l such that h1 ∈ l and l mis-
ses the absolute. Reconsider L = (Line-homography(N`))(l) as a line of
the real projective plane. Reconsider L′ = L as a line of Inc-ProjSp(the real
projective plane). Consider P1, P2 being elements of the absolute such that
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P1 6= P2 and P1 ∈ L′ and P2 ∈ L′. (The homography of N)(P1) is an ele-
ment of the absolute. (The homography ofN)(P1) ∈ (Line-homography(N))
(L). (The homography of N)(P1) ∈ l. �

(37) Suppose h = the homography of N . Then there exists a non zero element
u of E3T such that

(i) (the homography of N)(P ) = the direction of u, and

(ii) u(3) = 1.

The theorem is a consequence of (36).

3. The Construction of Beltrami-Klein Model

The functor BK-model-Betweenness yielding a relation between
(the BK-model)× (the BK-model) and the BK-model is defined by

(Def. 7) for every elements a, b, c of the BK-model, 〈〈〈〈a, b〉〉, c〉〉 ∈ it iff
BK-to-REAL2(b) ∈ L(BK-to-REAL2(a),BK-to-REAL2(c)).

The functor BK-model-Equidistance yielding a relation between
(the BK-model)×(the BK-model) and (the BK-model)×(the BK-model) is

defined by

(Def. 8) for every elements a, b, c, d of the BK-model, 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ it
iff there exists an element h of the subgroup of K-isometries and the-
re exists an invertible square matrix N over RF of dimension 3 such
that h = the homography of N and (the homography of N)(a) = c and
(the homography of N)(b) = d.

The functor BK-model-Plane yielding a Tarski plane is defined by the term

(Def. 9) 〈〈the BK-model,BK-model-Betweenness,BK-model-Equidistance 〉〉.

4. Congruence Symmetry

Now we state the proposition:

(38) BK-model-Plane satisfies the axiom of congruence symmetry.

5. Congruence Equivalence Relation

Now we state the proposition:

(39) BK-model-Plane satisfies the axiom of congruence equivalence relation.
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6. Congruence Identity

Now we state the proposition:

(40) BK-model-Plane satisfies the axiom of congruence identity.
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scientifiques de l’École Normale Supérieure. Trad. par J. Hoüel, volume 6, pages 251–
288. Elsevier, 1869.

[4] Karol Borsuk and Wanda Szmielew. Foundations of Geometry. North Holland, 1960.
[5] Karol Borsuk and Wanda Szmielew. Podstawy geometrii. Państwowe Wydawnictwo Na-

ukowe, Warszawa, 1955 (in Polish).
[6] Roland Coghetto. Group of homography in real projective plane. Formalized Mathematics,

25(1):55–62, 2017. doi:10.1515/forma-2017-0005.
[7] Roland Coghetto. Klein-Beltrami model. Part II. Formalized Mathematics, 26(1):33–48,

2018. doi:10.2478/forma-2018-0004.
[8] Adam Grabowski and Roland Coghetto. Tarski’s geometry and the Euclidean plane in

Mizar. In Joint Proceedings of the FM4M, MathUI, and ThEdu Workshops, Doctoral
Program, and Work in Progress at the Conference on Intelligent Computer Mathematics
2016 co-located with the 9th Conference on Intelligent Computer Mathematics (CICM
2016), Białystok, Poland, July 25–29, 2016, volume 1785 of CEUR-WS, pages 4–9. CEUR-
WS.org, 2016.

[9] Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Formalized
Mathematics, 2(2):225–232, 1991.

[10] Timothy James McKenzie Makarios. A mechanical verification of the independence of
Tarski’s Euclidean Axiom. Victoria University of Wellington, New Zealand, 2012. Master’s
thesis.

Accepted December 30, 2019

http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1515/forma-2017-0005
http://dx.doi.org/10.2478/forma-2018-0004
http://ceur-ws.org/Vol-1785/F2.pdf
http://ceur-ws.org/Vol-1785/F2.pdf
http://fm.mizar.org/1991-2/pdf2-2/incproj.pdf
https://books.google.be/books?id=76J2MwEACAAJ
https://books.google.be/books?id=76J2MwEACAAJ

	=0pt Klein-Beltrami model. Part III  By Roland Coghetto  

