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Summary. Rough sets, developed by Pawlak [15], are important tool to
describe situation of incomplete or partially unknown information. In this article,
continuing the formalization of rough sets [12], we give the formal characterization
of three rough inclusion functions (RIFs). We start with the standard one, κ£,
connected with Łukasiewicz [14], and extend this research for two additional
RIFs: κ1, and κ2, following a paper by Gomolińska [4], [3]. We also define q-RIFs
and weak q-RIFs [2]. The paper establishes a formal counterpart of [7] and makes
a preliminary step towards rough mereology [16], [17] in Mizar [13].
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0. Introduction

In the paper, continuing our development of rough sets, we define three
closely related rough inclusion functions (RIFs).

Until now, most of the Mizar formalization of rough sets [5], [8] was done by
means of the notion of a generalized approximation space understood as a pair
〈U, ρ〉, where ρ is an indiscernibility relation defined on the universe U . This
viewpoint, based on tolerances instead of equivalence relations, was studied by
Skowron and Stepaniuk [18], then, in a general form, by Zhu [19], among many
others, and the Mizar counterpart of it is included in [9] and [10].
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In the alternative approach, used by Gomolińska [3], approximation spaces
are treated as triples of the form

A = (U, I, κ),

where U is a non-empty set called the universe, I : U 7→ ℘U is an uncertainty
mapping, and κ : ℘U × ℘U 7→ [0, 1] is a rough inclusion function. The forma-
lization of uncertainty mappings was discussed in [12], and this article tries to
define the missing part of the above definition, with future possibility of merging
approaches via theory merging mechanism [6], avoiding duplication as much as
we can [11].

We start with some preliminaries, which cover gaps in the existing state of
the Mizar Mathematical Library. Section 2 deals with the standard rough inc-
lusion function, which appears in some form in the research by Jan Łukasiewicz
[14], obviously without any reference for rough sets. This pretty general Mizar
functor κ£ is defined as follows:

κ£(X,Y ) =

{ |X∩Y |
|X| , if X 6= ∅

1, otherwise

For a given universe U , rough inclusion functions (RIFs for short) are the
mappings κ from ℘U × ℘U into unit interval which satisfy two properties:

rif1(κ)⇔ ∀X,Y⊆U (κ(X,Y ) = 1⇔ X ⊆ Y )

rif2(κ)⇔ ∀X,Y,Z⊆U (Y ⊆ Z ⇒ κ(X,Y ) ¬ κ(X,Z))

This is discussed in Sect. 3; corresponding Mizar modes RIF and preRIF are
also introduced.

Besides κ£, there are two relatively well-known RIFs:

κ1(X,Y ) =

{ |Y |
|X∪Y | , if X ∪ Y 6= ∅
1, otherwise

κ2(X,Y ) =
|(U −X) ∪ Y |

|U |
.

Section 4 contains their definitions, both of the form of Mizar functors, and as
set-theoretic functions.

It should be mentioned that in this Mizar translation (and also in the so-
urce code), predicative form of the properties of RIFs, as, for example, rif1(κ)
is replaced by the phrase “κ satisfies (RIF1)” (and for others, respectively). In
Sect. 5 we formulate some additional characteristic properties of rough inclu-
sions; in Sect. 6 we show that, under the assumption that rif1 holds, rif2 can be
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replaced by rif∗2. We introduce also some weakened versions of rough inclusions:
quasi-RIF and weak quasi-RIF.

All three considered RIFs (κ£, κ1, κ2) are distinct. Gomolińska takes U =
{0, 1, 2, . . . , 9},X = {0, . . . , 4}, Y = {2, . . . , 6}. Then κ£(X,Y ) = 3/5, κ1(X,Y ) =
5/7, and κ2(X,Y ) = 4/5. In Sect. 9, we constructed an example, which in Mizar
is the functor ExampleRIFSpace, claiming that U = {1, 2, 3, 4, 5}, X = {1, 2},
Y = {2, 3, 4} with κ£(X,Y ) = 1/2, κ1(X,Y ) = 3/4, and κ2(X,Y ) = 4/5.Obvio-
usly, the indiscernibility relation does not matter, and so we took the identity as
the simplest. The proofs, based on our specific example, are significantly shorter
than those proposed by Gomolińska.

In the final section, we formalized two theorems from another Gomolińska’s
paper [1], which was already translated into Mizar [12], but without the notion
of RIF; now we can fill this gap.

1. Preliminaries

Now we state the propositions:

(1) Let us consider real numbers a, b, c. If b > 0 and a ¬ b and c ­ 0, then
a
b ¬

a+c
b+c .

Observe that there exists an approximation space which is strict and finite.
Let R be a finite 1-sorted structure. One can check that every subset of R

is finite.
From now on R denotes a 1-sorted structure and X, Y denote subsets of R.

(2) X ⊆ Y if and only if Xc ∪ Y = ΩR.
Proof: If X ⊆ Y, then Xc ∪ Y = ΩR. �

From now on R denotes a finite 1-sorted structure and X, Y denote subsets
of R. Now we state the propositions:

(3) X ∪ Y = Y if and only if X ⊆ Y.
(4) If Xc ∪ Y = ΩR , then Xc ∪ Y = ΩR.

Let R be a non empty 1-sorted structure and X be a subset of R. Note that
ΩR ∪X reduces to ΩR and ΩR ∩X reduces to X.

2. Standard Rough Inclusion Function

From now on R denotes a finite approximation space and X, Y, Z, W denote
subsets of R.

Let R be a finite approximation space and X, Y be subsets of R. The functor
κ£(X,Y ) yielding an element of [0, 1] is defined by the term
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(Def. 1)

 X∩Y
X

, if X 6= ∅,
1, otherwise.

Now we state the propositions:

(5) κ£(∅R, X) = 1.

(6) κ£(X,Y ) = 1 if and only if X ⊆ Y.
(7) If Y ⊆ Z, then κ£(X,Y ) ¬ κ£(X,Z).

(8) If Z ⊆ Y ⊆ X, then κ£(X,Z) ¬ κ£(Y,Z).

(9) κ£(X,Y ∪ Z) ¬ κ£(X,Y ) + κ£(X,Z).

(10) If X 6= ∅ and Y misses Z, then κ£(X,Y ∪ Z) = κ£(X,Y ) + κ£(X,Z).

3. Rough Inclusion Functions

Let R be a 1-sorted structure.
A pre-rough inclusion function of R is a function from 2(the carrier of R) ×

2(the carrier of R) into [0, 1].
A preRIF of R is a pre-rough inclusion function of R.
The scheme BinOpEq deals with a non empty 1-sorted structure R and

a binary functor F yielding an element of [0, 1] and states that

(Sch. 1) For every preRIFs f1, f2 of R such that for every subsets x, y of R,
f1(x, y) = F(x, y) and for every subsets x, y of R, f2(x, y) = F(x, y)
holds f1 = f2.

Let R be a finite approximation space. The functor κ£(R) yielding a preRIF
of R is defined by

(Def. 2) for every subsets x, y of R, it(x, y) = κ£(x, y).

4. Defining Two New RIFs

Let R be a finite approximation space and X, Y be subsets of R. The functor
κ1(X,Y ) yielding an element of [0, 1] is defined by the term

(Def. 3)

 Y

X∪Y
, if X ∪ Y 6= ∅,

1, otherwise.

The functor κ2(X,Y ) yielding an element of [0, 1] is defined by the term

(Def. 4) Xc∪Y
ΩR

.

The functor κ1(R) yielding a preRIF of R is defined by

(Def. 5) for every subsets x, y of R, it(x, y) = κ1(x, y).
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The functor κ2(R) yielding a preRIF of R is defined by

(Def. 6) for every subsets x, y of R, it(x, y) = κ2(x, y).

Now we state the propositions:

(11) κ1(X,Y ) = 1 if and only if X ⊆ Y. The theorem is a consequence of (3).

(12) κ2(X,Y ) = 1 if and only if X ⊆ Y. The theorem is a consequence of (2)
and (4).

(13) If κ1(X,Y ) = 0, then Y = ∅.
(14) If X 6= ∅, then κ1(X,Y ) = 0 iff Y = ∅. The theorem is a consequence of

(13).

(15) κ2(X,Y ) = 0 if and only if X = ΩR and Y = ∅.
(16) If Y ⊆ Z, then κ1(X,Y ) ¬ κ1(X,Z). The theorem is a consequence of

(1).

(17) If Y ⊆ Z, then κ2(X,Y ) ¬ κ2(X,Z).

(18) κ1(∅R, X) = 1. The theorem is a consequence of (11).

(19) κ2(∅R, X) = 1. The theorem is a consequence of (12).

5. Characteristic Properties of Rough Inclusions

Let R be a non empty relational structure and κ be a preRIF of R. We say
that κ satisfies (RIF1) if and only if

(Def. 7) for every subsets X, Y of R, κ(X,Y ) = 1 iff X ⊆ Y.
We say that κ satisfies (RIF2) if and only if

(Def. 8) for every subsets X, Y, Z of R such that Y ⊆ Z holds κ(X,Y ) ¬ κ(X,Z).

We say that κ satisfies (RIF3) if and only if

(Def. 9) for every subset X of R such that X 6= ∅ holds κ(X, ∅R) = 0.

We say that κ satisfies (RIF4) if and only if

(Def. 10) for every subsets X, Y of R such that κ(X,Y ) = 0 holds X misses Y.

We say that κ satisfies (RIF0) if and only if

(Def. 11) for every subsets X, Y of R such that X ⊆ Y holds κ(X,Y ) = 1.

We say that κ satisfies (RIF−1
0 ) if and only if

(Def. 12) for every subsets X, Y of R such that κ(X,Y ) = 1 holds X ⊆ Y.
We say that κ satisfies (RIF∗2) if and only if

(Def. 13) for every subsets X, Y, Z of R such that κ(Y, Z) = 1 holds κ(X,Y ) ¬
κ(X,Z).
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Observe that every preRIF of R which satisfies (RIF1) satisfies also (RIF0)
and (RIF−1

0 ) and every preRIF of R which satisfies (RIF0) and (RIF−1
0 ) satisfies

also (RIF1).
Let R be a finite approximation space. One can check that κ£(R) satisfies

(RIF1) and κ£(R) satisfies (RIF2) and κ1(R) satisfies (RIF1) and κ1(R) satisfies
(RIF2) and κ2(R) satisfies (RIF1) and κ2(R) satisfies (RIF2).

Let us consider R. Note that there exists a preRIF of R which satisfies (RIF1)
and (RIF2).

6. On the Connections between Postulates

Now we state the proposition:

(20) Let us consider preRIF κ of R satisfying (RIF1). Then κ satisfies (RIF2)
if and only if κ satisfies (RIF∗2).

Let us consider R. Let us observe that every preRIF of R satisfying (RIF1)
which satisfies (RIF2) satisfies also (RIF∗2) and every preRIF of R satisfying
(RIF1) which satisfies (RIF∗2) satisfies also (RIF2) and κ£(R) satisfies (RIF0)
and (RIF∗2) and there exists a pre-rough inclusion function of R which satisfies
(RIF0), (RIF1), (RIF2), and (RIF∗2).

A rough inclusion function ofR is pre-rough inclusion function ofR satisfying
(RIF1) and (RIF2).

A quasi-rough inclusion function of R is preRIF of R satisfying (RIF0) and
(RIF∗2).

A weak quasi-rough inclusion function of R is preRIF of R satisfying (RIF0)
and (RIF2).

A RIF of R is a rough inclusion function of R.
A q-RIF of R is a quasi-rough inclusion function of R.
A weak q-RIF of R is a weak quasi-rough inclusion function of R.

7. Formalization of Proposition 2 [3]

Now we state the propositions:

(21) If X 6= ∅ and Z∪W = ΩR and Z misses W , then κ£(X,Z)+κ£(X,W ) =
1.

(22) If κ£(X,Y ) = 0, then X misses Y.

(23) If X 6= ∅, then κ£(X,Y ) = 0 iff X misses Y. The theorem is a consequ-
ence of (22).

(24) If X 6= ∅, then κ£(X, ∅R) = 0.
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Now we state the propositions:

(25) If X 6= ∅ and X misses Y, then κ£(X,Z\Y ) = κ£(X,Z∪Y ) = κ£(X,Z).
The theorem is a consequence of (23), (10), (7), and (9).

(26) If Z misses W , then κ£(Y ∪ Z,W ) ¬ κ£(Y,W ) ¬ κ£(Y \ Z,W ).

(27) If Z misses Y and Z ⊆ W , then κ£(Y \ Z,W ) ¬ κ£(Y,W ) ¬ κ£(Y ∪
Z,W ).

8. Formalization of Proposition 4 [3]

Let us consider R. Let X be a non empty subset of R. Let us note that
κ£(X, ∅R) is empty.

Now we state the propositions:

(28) If κ1(X,Y ) = 0, then X misses Y. The theorem is a consequence of (14).

(29) If κ2(X,Y ) = 0, then X misses Y. The theorem is a consequence of (15).

Let us consider R. Observe that κ£(R) satisfies (RIF4) and κ1(R) satisfies
(RIF4) and κ2(R) satisfies (RIF4).

(30) κ£(X,Y ) ¬ κ1(X,Y ) ¬ κ2(X,Y ). The theorem is a consequence of (1),
(18), and (19).

(31) κ1(X,Y ) = κ£(X ∪Y, Y ). The theorem is a consequence of (6) and (11).

(32) κ2(X,Y ) = κ£(ΩR, Xc ∪ Y ) = κ£(ΩR, Xc) + κ£(ΩR, X ∩ Y ).

(33) κ£(X,Y ) = κ£(X,X ∩ Y ) = κ1(X,X ∩ Y ) = κ1(X \ Y,X ∩ Y ).

(34) If X∪Y = ΩR, then κ1(X,Y ) = κ2(X,Y ). The theorem is a consequence
of (2).

(35) If X 6= ∅, then 1−κ£(X,Y ) = κ£(X,Y c). The theorem is a consequence
of (10) and (6).

9. Concrete Example

Let X be a set. The functor DiscreteApproxSpace(X) yielding a strict rela-
tional structure is defined by the term

(Def. 14) 〈X, idX〉.
Let us note that DiscreteApproxSpace(X) has equivalence relation.
Let X be a non empty set. Observe that DiscreteApproxSpace(X) is non

empty.
Let X be a finite set. Let us observe that DiscreteApproxSpace(X) is finite.
The functor ExampleRIFSpace yielding a strict, finite approximation space

is defined by the term
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(Def. 15) DiscreteApproxSpace({1, 2, 3, 4, 5}).
Now we state the propositions:

(36) Let us consider subsets X, Y of ExampleRIFSpace. Suppose X = {1, 2}
and Y = {2, 3, 4}. Then κ£(X,Y ) 6= κ£(Y,X).

(37) Let us consider subsets X, Y, U of ExampleRIFSpace. Suppose X =
{1, 2} and Y = {1, 2, 3} and U = {2, 4, 5}. Then κ£(X,U) 6¬ κ£(Y,U).

(38) Let us consider subsets X, Y of ExampleRIFSpace. Suppose X = {1, 2}
and Y = {2, 3, 4}. Then κ£(X,Y ), κ1(X,Y ), κ2(X,Y ) are mutually diffe-
rent.

10. Continuing Formalization of Theorem 4.1 [1]

Let us consider a finite approximation space R, an element u of R, and
subsets x, y of R. Now we state the propositions:

(39) If u ∈ (f1(R))(x) and (IR)(u) = y, then κ£(y, x) > 0. The theorem is
a consequence of (22).

(40) If u ∈ (Flip f1(R))(x) and (IR)(u) = y, then κ£(y, x) = 1. The theorem
is a consequence of (6).
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