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About Supergraphs. Part III

Sebastian Koch
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Summary. The previous articles [5] and [6] introduced formalizations of
the step-by-step operations we use to construct finite graphs by hand. That im-
plicitly showed that any finite graph can be constructed from the trivial edgeless
graph K1 by applying a finite sequence of these basic operations. In this article
that claim is proven explicitly with Mizar[4].
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0. Introduction

In the literature a mutual understanding how the graphical representation
of graphs is to be translated into a description fitting the set-theoretic definition
is usually assumed (cf. [9], [3], [8], [2]), but in Mizar we need explicit operations,
which were provided in [5] and [6].

The rather extensive preliminaries contain many theorems that would fit
well into earlier articles of the GLIB series, for example:

• In a simple graph, the degree of a vertex equals the cardinality of its
neighbors.

• The operations of removing a vertex or an edge in a graph commute.

• Every finite connected graph has a spanning tree.
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• Endvertices are no cut vertices.

Graphs without edges are rigorously introduced in the following section.
Wilson calls those null graphs ([9]). Bondy and Murty call them empty graphs
([3]), while naming the graph without vertices the null graph. Both notations are
common in the literature. To avoid confusion those graphs are simply introduced
as edgeless here.

To describe the construction of finite graphs starting from the trivial edgeless
K1, finite sequences yielding graphs are needed, which are introduced in the next
section expanding the notation from [7], [1].

The last section contains the formalizations of the main results:

• Adding n vertices to a graph can be done by adding one vertex after
another.

• Any finite edgeless graph can be constructed from K1 by adding one vertex
at a time.

• Any finite (connected) graph can be reconstructed from a spanning (con-
nected) subgraph by adding one edge at a time.

• Any finite graph can be constructed from K1 by adding one vertex or one
edge at a time.

• Any finite tree can be constructed from K1 by adding one vertex and an
edge incident with that vertex at a time.

• Any finite connected graph can be constructed from K1 by adding one
edge or one vertex and an edge incident with that vertex at a time.

• Adding a vertex to a graph and connecting it to a (possibly empty) subset
of the vertices of said graph can be done by first adding the new vertex
and then adding one edge at a time.

• Any finite simple graph can be constructed from K1 by adding one vertex
connecting it to a (possibly empty) subset of the vertices of the previous
contruction step at a time.

• If the finite simple graph is also connected, the subset of adjacent vertices
can be guarantied to be non empty.

The number of operations needed is given for each process in terms of order and
size of the involved graphs. Some proof schemes are presented to make use of
these constructions.
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1. Preliminaries

Let G be a graph and v be a vertex of G. Let us observe that every subgraph
of G induced by {v} is trivial.

Let us consider a graph G, a set X, and a vertex v of G. Now we state the
propositions:

(1) G.edgesBetween(X \ {v}) = G.edgesBetween(X) \ v.edgesInOut().

(2) If v is isolated, then G.edgesBetween(X \ {v}) = G.edgesBetween(X).
The theorem is a consequence of (1).

Let us consider a non-directed-multi graph G and a vertex v of G. Now we
state the propositions:

(3) v.inDegree() = v.inNeighbors().
Proof: Define P[object, object] ≡ $2 joins $1 to v in G. Consider f being
a function such that dom f = v.inNeighbors() and for every object x

such that x ∈ v.inNeighbors() holds P[x, f(x)]. f is a bijection between
v.inNeighbors() and v.edgesIn(). �

(4) v.outDegree() = v.outNeighbors().
Proof: Define P[object, object] ≡ $2 joins v to $1 in G. Consider f being
a function such that dom f = v.outNeighbors() and for every object x
such that x ∈ v.outNeighbors() holds P[x, f(x)]. f is a bijection between
v.outNeighbors() and v.edgesOut(). �

(5) Let us consider a simple graph G, and a vertex v of G. Then v.degree() =

v.allNeighbors().
Proof: v.inNeighbors() ∩ v.outNeighbors() = ∅. �

(6) Let us consider a graph G. Then G is loopless if and only if for every
vertex v of G, v /∈ v.allNeighbors().
Proof: For every object v, there exists no object e such that e joins v
and v in G. �

(7) Let us consider a graph G, and a vertex v of G. Then v is isolated if and
only if v.allNeighbors() = ∅.

(8) Let us consider a graph G1, a set v, and a subgraph G2 of G1 with vertex
v removed. Suppose G1 is trivial or v /∈ the vertices of G1. Then G1 ≈ G2.

(9) Let us consider graphs G1, G2, and a set v. Suppose G1 ≈ G2 and (G1 is
trivial or v /∈ the vertices of G1). Then G2 is a subgraph of G1 with vertex
v removed.

(10) Let us consider a graph G. Suppose there exist vertices v1, v2 of G such
that v1 6= v2. Then G is not trivial.
Proof: α 6= 1, where α is the vertices of G. �
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Let G be a non trivial graph and X be a set. Let us note that every subgraph
of G with edges X removed is non trivial. Now we state the propositions:

(11) Let us consider a finite graph G1, and a subgraph G2 of G1. Then G2 is
spanning if and only if G1.order() = G2.order().

(12) Let us consider a graph G1, and a spanning subgraph G2 of G1. Suppose
the edges of G1 = the edges of G2. Then G1 ≈ G2.

(13) Let us consider a finite graph G1, and a spanning subgraph G2 of G1.
If G1.size() = G2.size(), then G1 ≈ G2. The theorem is a consequence of
(12).

(14) Let us consider a graph G1, a set V , and a subgraph G2 of G1 induced
by V . If G2 is spanning, then G1 ≈ G2.

Let us consider a graph G. Now we state the propositions:

(15) G is not trivial if and only if there exists a subgraph H of G such that
H is not spanning.

(16) If there exists a vertex v of G such that v is endvertex, then G is not
trivial.
Proof: Consider e being an object such that v.edgesInOut() = {e} and
e does not join v and v in G. For every vertex u of G, the vertices of
G 6= {u}. �

(17) Let us consider a graph G1, sets v, e, a subgraph G2 of G1 with vertex
v removed, and a subgraph G3 of G1 with edge e removed. Then every
subgraph of G2 with edge e removed is a subgraph of G3 with vertex v

removed. The theorem is a consequence of (1), (8), and (9).

(18) Let us consider a graph G1, sets v, e, a subgraph G2 of G1 with edge
e removed, and a subgraph G3 of G1 with vertex v removed. Then every
subgraph of G2 with vertex v removed is a subgraph of G3 with edge e
removed. The theorem is a consequence of (1) and (8).

Let G be a finite, connected graph. Note that there exists a subgraph of G
which is spanning, tree-like, connected, and acyclic.

Now we state the propositions:

(19) Let us consider a connected graph G1, and a subgraph G2 of G1. Suppose
the edges of G1 ⊆ the edges of G2. Then G1 ≈ G2.
Proof: The vertices of G1 = the vertices of G2. �

(20) Let us consider a finite, connected graph G1, and a subgraph G2 of G1.
If G1.size() = G2.size(), then G1 ≈ G2. The theorem is a consequence of
(19).

(21) Let us consider a finite, tree-like graph G1, and a spanning, tree-like
subgraph G2 of G1. Then G1 ≈ G2. The theorem is a consequence of (11)
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and (13).

Let G be a non trivial graph. Observe that there exists a subgraph of G
which is non spanning, trivial, and connected.

Now we state the propositions:

(22) Let us consider a graph G, and vertices v1, v2 of G. Suppose v1 /∈
G.reachableFrom(v2).
Then G.reachableFrom(v1) misses G.reachableFrom(v2).

(23) Let us consider a graph G. Then G.componentSet() is a partition of
the vertices of G.
Proof: Set V = the vertices of G. For every subset A of V such that
A ∈ G.componentSet() holds A 6= ∅ and for every subset B of V such that
B ∈ G.componentSet() holds A = B or A misses B. �

(24) Let us consider a graph G, a partition C of the vertices of G, and a vertex
v of G. If C = G.componentSet(),
then EqClass(v, C) = G.reachableFrom(v).

(25) Let us consider a graph G1, vertices v0, v1 of G1, a subgraph G2 of G1
with vertex v0 removed, and a vertex v2 of G2. Suppose v0 is endvertex and
v1 = v2 and v1 ∈ G1.reachableFrom(v0). Then G2.reachableFrom(v2) =
(G1.reachableFrom(v1)) \ {v0}.
Proof: G1 is not trivial. For every object w, w ∈ G2.reachableFrom(v2)
iff w ∈ G1.reachableFrom(v1) and w /∈ {v0}. �

(26) Let us consider a non trivial graph G1, vertices v0, v1 of G1, a sub-
graph G2 of G1 with vertex v0 removed, and a vertex v2 of G2. Suppose
v1 = v2 and v1 /∈ G1.reachableFrom(v0). Then G2.reachableFrom(v2) =
G1.reachableFrom(v1).
Proof: For every object w such that w ∈ G1.reachableFrom(v1) holds
w ∈ G2.reachableFrom(v2). �

(27) Let us consider a non trivial, finite, tree-like graph G, and a vertex v of
G. If G.order() = 2, then v is endvertex.

Let G be a non trivial, connected graph and v be a vertex of G. Observe
that v.allNeighbors() is non empty.

Now we state the propositions:

(28) Let us consider a tree T , and a vertex a of T . Then T .pathBetween(a, a) =
T .walkOf(a).

(29) Let us consider a tree T , vertices a, b of T , and an object e. If e joins a
and b in T , then T .pathBetween(a, b) = T .walkOf(a, e, b).

(30) Let us consider a non trivial, finite tree T , and a vertex v of T . Then
there exist vertices v1, v2 of T such that
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(i) v1 6= v2, and

(ii) v1 is endvertex, and

(iii) v2 is endvertex, and

(iv) v ∈ (T .pathBetween(v1, v2)).vertices().

Proof: Define P[natural number] ≡ for every non trivial, finite tree T
for every vertex v of T such that T .order() = $1 + 2 there exist vertices
v1, v2 of T such that v1 6= v2 and v1 is endvertex and v2 is endvertex and
v ∈ (T .pathBetween(v1, v2)).vertices(). P[0]. For every natural number k
such that P[k] holds P[k+ 1]. For every natural number k, P[k]. Consider
k being a natural number such that T .order() = 2 + k. �

(31) Let us consider a non trivial, finite, tree-like graph G1, and a non span-
ning, connected subgraph G2 of G1. Then there exists a vertex v of G1
such that

(i) v is endvertex, and

(ii) v /∈ the vertices of G2.

The theorem is a consequence of (30).

(32) Let us consider graphs G2, G3, a set V , and a supergraph G1 of G2 exten-
ded by the vertices from V . Suppose G2 ≈ G3. Then G1 is a supergraph
of G3 extended by the vertices from V .

(33) Let us consider a graphG2, and a supergraphG1 ofG2. Suppose the edges
of G1 = the edges of G2. Then G1 is a supergraph of G2 extended by the
vertices from (the vertices of G1) \ (the vertices of G2).

(34) Let us consider a finite graph G1, and a subgraph G2 of G1. Suppose
G1.size() = G2.size(). Then G1 is a supergraph of G2 extended by the
vertices from (the vertices of G1) \ (the vertices of G2). The theorem is
a consequence of (33).

(35) Let us consider a non trivial graph G1, a vertex v of G1, and a subgraph
G2 of G1 with vertex v removed. If v is isolated, then G1 is a supergraph
of G2 extended by v. The theorem is a consequence of (2).

(36) Let us consider graphs G2, G3, objects v1, e, v2, and a supergraph G1
of G2 extended by e between vertices v1 and v2. Suppose G2 ≈ G3. Then
G1 is a supergraph of G3 extended by e between vertices v1 and v2.

(37) Let us consider a graph G1, a set e, and a subgraph G2 of G1 with edge
e removed. Suppose e ∈ the edges of G1. Then G1 is a supergraph of G2
extended by e between vertices (the source of G1)(e) and (the target of
G1)(e).
Proof: Set u = (the source of G1)(e). Set w = (the target of G1)(e). For
every object e0 such that e0 ∈ dom(the source of G1) holds (the source of
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G1)(e0) = ((the source ofG2)+·(e 7−→. u))(e0). For every object e0 such that
e0 ∈ dom(the target of G1) holds (the target of G1)(e0) = ((the target of
G2)+·(e7−→. w))(e0). �

(38) Let us consider a non trivial graph G1, a vertex v of G1, an object e, and
a subgraphG2 ofG1 with vertex v removed. Suppose {e} = v.edgesInOut()
and e does not join v and v in G1. Then G1 is supergraph of G2 extended
by v.adj(e), v and e between them or supergraph of G2 extended by v,
v.adj(e) and e between them. The theorem is a consequence of (1).

(39) Let us consider a graph G2, vertices v1, v2 of G2, an object e, a super-
graph G1 of G2 extended by e between vertices v1 and v2, a vertex w of
G1, and a vertex v of G2. Suppose v2 ∈ G2.reachableFrom(v1) and v = w.
Then G1.reachableFrom(w) = G2.reachableFrom(v).

(40) Let us consider a graph G2, vertices v1, v2 of G2, an object e, and a super-
graph G1 of G2 extended by e between vertices v1 and v2. Suppose v2 ∈
G2.reachableFrom(v1). Then G1.componentSet() = G2.componentSet().
The theorem is a consequence of (39).

(41) Let us consider a graph G2, vertices v1, v2 of G2, an object e, a super-
graph G1 of G2 extended by e between vertices v1 and v2, and vertices w1,
w2 of G1. Suppose e /∈ the edges of G2 and w1 = v1 and w2 = v2. Then
w2 ∈ G1.reachableFrom(w1).

(42) Let us consider a graph G2, vertices v1, v2 of G2, an object e, a super-
graph G1 of G2 extended by e between vertices v1 and v2, and a vertex w1
of G1. Suppose e /∈ the edges of G2 and w1 = v1. Then G1.reachableFrom
(w1) = (G2.reachableFrom(v1)) ∪ (G2.reachableFrom(v2)).
Proof: For every object x such that x ∈ G1.reachableFrom(w1) holds x
∈ (G2.reachableFrom(v1)) ∪ (G2.reachableFrom(v2)). G2.reachableFrom
(v2) ⊆ G1.reachableFrom(w1). �

(43) Let us consider a graph G2, vertices v1, v2 of G2, an object e, a su-
pergraph G1 of G2 extended by e between vertices v1 and v2, a ver-
tex w of G1, and a vertex v of G2. Suppose e /∈ the edges of G2 and
v = w and v /∈ G2.reachableFrom(v1) and v /∈ G2.reachableFrom(v2).
Then G1.reachableFrom(w) = G2.reachableFrom(v).
Proof: For every object x such that x ∈ G1.reachableFrom(w) holds
x ∈ G2.reachableFrom(v). �

(44) Let us consider a graph G2, vertices v1, v2 of G2, an object e, and
a supergraph G1 of G2 extended by e between vertices v1 and v2. Suppose
e /∈ the edges of G2. Then G1.componentSet() = (G2.componentSet() \
{G2.reachableFrom(v1), G2.reachableFrom(v2)}) ∪ {(G2.reachableFrom
(v1)) ∪ (G2.reachableFrom(v2))}.
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(45) Let us consider a graph G1, a vertex v of G1, and a subgraph G2 of G1
with vertex v removed. If v is endvertex, then G1.numComponents() =
G2.numComponents().
Proof: G1 is not trivial. There exists a function f such that f is one-
to-one and dom f = G1.componentSet() and rng f = G2.componentSet().
�

Let G be a graph. One can check that every vertex of G which is endvertex
is also non cut-vertex. Now we state the propositions:

(46) Let us consider a non trivial, finite, connected graph G1, and a non
spanning, connected subgraph G2 of G1. Then there exists a vertex v of
G1 such that

(i) v is not cut-vertex, and

(ii) v /∈ the vertices of G2.

Proof: Define P[natural number] ≡ for every non trivial, finite, connec-
ted graph G1 for every non spanning, connected subgraph G2 of G1 such
that G1.order() + $1 = G1.size() + 1 there exists a vertex v of G1 such
that v is not cut-vertex and v /∈ the vertices of G2. P[0]. For every natural
number k such that P[k] holds P[k+1]. For every natural number k, P[k].
�

(47) Let us consider a non trivial, simple graph G1, a vertex v of G1, and
a subgraph G2 of G1 with vertex v removed. Then G1 is a supergraph of
G2 extended by vertex v and edges between v and v.allNeighbors() of G2.

2. Edgeless and Non Edgeless Graphs

Let G be a graph. We say that G is edgeless if and only if

(Def. 1) the edges of G = ∅.
Let us consider a graph G. Now we state the propositions:

(48) G is edgeless if and only if α = 0, where α is the edges of G.

(49) G is edgeless if and only if G.size() = 0.

Let G be a graph. Observe that every subgraph of G with edges the edges of
G removed is edgeless and there exists a graph which is edgeless and there exists
a subgraph of G which is edgeless and spanning and there exists a subgraph of
G which is edgeless and trivial.

Let G be an edgeless graph. One can check that the edges of G is empty
and every graph which is edgeless is also non-multi, non-directed-multi, loopless,
simple, and directed-simple and every graph which is trivial and loopless is also
edgeless.
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Let V be a non empty set and S, T be functions from ∅ into V . One can
check that createGraph(V, ∅, S, T ) is edgeless.

Now we state the propositions:

(50) Let us consider an edgeless graph G, and objects e, v1, v2. Then

(i) e does not join v1 and v2 in G, and

(ii) e does not join v1 to v2 in G.

(51) Let us consider an edgeless graph G, an object e, and sets X, Y. Then

(i) e does not join a vertex from X and a vertex from Y in G, and

(ii) e does not join a vertex from X to a vertex from Y in G.

(52) Let us consider graphs G1, G2. If G1 ≈ G2, then if G1 is edgeless, then
G2 is edgeless.

Let G be an edgeless graph. Let us observe that every walk of G is trivial
and every subgraph of G is edgeless.

Let X be a set. Note that G.edgesInto(X) is empty and G.edgesOutOf(X)
is empty and G.edgesInOut(X) is empty and G.edgesBetween(X) is empty and
G.set(WeightSelector, X) is edgeless and G.set(ELabelSelector, X) is edgeless
and G.set(VLabelSelector, X) is edgeless and every supergraph of G extended
by the vertices from X is edgeless and every graph given by reversing directions
of the edges X of G is edgeless.

Let Y be a set. Let us note that G.edgesBetween(X,Y ) is empty and
G.edgesDBetween(X,Y ) is empty and every graph which is edgeless is also

acyclic and chordal and every graph which is trivial and edgeless is also tree-like
and every graph which is non trivial and edgeless is also non connected, non
tree-like, and non complete and every graph which is connected and edgeless is
also trivial.

Now we state the propositions:

(53) Let us consider an edgeless graph G1, and a subgraph G2 of G1. Then
G1 is a supergraph of G2 extended by the vertices from (the vertices of
G1) \ (the vertices of G2). The theorem is a consequence of (33).

(54) Let us consider a graph G2, vertices v1, v2 of G2, an object e, and
a supergraph G1 of G2 extended by e between vertices v1 and v2. Suppose
e /∈ the edges of G2. Then G1 is not edgeless.

(55) Let us consider a graph G2, a vertex v1 of G2, objects e, v2, and a su-
pergraph G1 of G2 extended by v1, v2 and e between them. Suppose
v2 /∈ the vertices of G2 and e /∈ the edges of G2. Then G1 is not edge-
less.

(56) Let us consider a graph G2, objects v1, e, a vertex v2 of G2, and a su-
pergraph G1 of G2 extended by v1, v2 and e between them. Suppose
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v1 /∈ the vertices of G2 and e /∈ the edges of G2. Then G1 is not edge-
less.

(57) Let us consider a graph G2, an object v, a non empty subset V of the ver-
tices of G2, and a supergraph G1 of G2 extended by vertex v and edges
between v and V of G2. Suppose v /∈ the vertices of G2. Then G1 is not
edgeless.

Let G be a graph. Let us observe that every supergraph of G extended by
vertex the vertices of G and edges from the vertices of G to the vertices of G
is non edgeless and every supergraph of G extended by vertex the vertices of
G and edges from the vertices of G to the vertices of G is non edgeless and
every supergraph of G extended by vertex the vertices of G and edges between
the vertices of G and the vertices of G is non edgeless.

Let v be a vertex of G. Let us note that every supergraph of G extended by
v, the vertices of G and the edges of G between them is non edgeless and every
supergraph of G extended by the vertices of G, v and the edges of G between
them is non edgeless.

Let w be a vertex of G. Let us note that every supergraph of G extended by
the edges of G between vertices v and w is non edgeless.

Let G be an edgeless graph. Note that every component of G is trivial and
v.edgesIn() is empty and v.edgesOut() is empty and v.edgesInOut() is emp-
ty and every vertex of G is isolated, non cut-vertex, and non endvertex and
v.inDegree() is empty and v.outDegree() is empty and v.inNeighbors() is empty
and v.outNeighbors() is empty and v.degree() is empty and v.allNeighbors() is
empty and there exists a graph which is trivial, finite, and edgeless and there
exists a graph which is non trivial, finite, and edgeless and there exists a graph
which is trivial, finite, and non edgeless and there exists a graph which is non
trivial, finite, and non edgeless.

Let G be a non edgeless graph. One can check that the edges of G is non
empty and every supergraph of G is non edgeless.

Let X be a set. One can verify that every graph given by reversing directions
of the edges X of G is non edgeless and G.set(WeightSelector, X) is non edgeless
and G.set(ELabelSelector, X) is non edgeless and G.set(VLabelSelector, X) is
non edgeless.

An edge of G is an element of the edges of G. Now we state the proposition:

(58) Let us consider a finite, edgeless graph G1, and a subgraph G2 of G1. If
G1.order() = G2.order(), then G1 ≈ G2.

Let F be a graph-yielding function. We say that F is edgeless if and only if

(Def. 2) for every object x such that x ∈ domF there exists a graph G such that
F (x) = G and G is edgeless.
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Let F be a non empty, graph-yielding function. Note that F is edgeless if
and only if the condition (Def. 3) is satisfied.

(Def. 3) for every element x of domF , F (x) is edgeless.

Let S be a graph sequence. Let us note that S is edgeless if and only if the
condition (Def. 4) is satisfied.

(Def. 4) for every natural number n, S(n) is edgeless.

Let us observe that every graph-yielding function which is trivial and loopless
is also edgeless and every graph-yielding function which is edgeless is also non-
multi, non-directed-multi, loopless, simple, directed-simple, and acyclic.

Let F be an edgeless, non empty, graph-yielding function and x be an ele-
ment of domF . Observe that F (x) is edgeless.

Let S be an edgeless graph sequence and x be a natural number. Observe
that S(x) is edgeless.

3. Finite Graph Sequences

Let G be a graph. Note that 〈G〉 is graph-yielding.
Let G be a finite graph. Let us note that 〈G〉 is finite.
Let G be a loopless graph. Observe that 〈G〉 is loopless.
Let G be a trivial graph. Let us observe that 〈G〉 is trivial.
Let G be a non trivial graph. Let us observe that 〈G〉 is nontrivial.
Let G be a non-multi graph. One can verify that 〈G〉 is non-multi.
Let G be a non-directed-multi graph. One can check that 〈G〉 is non-directed-

multi.
Let G be a simple graph. Note that 〈G〉 is simple.
Let G be a directed-simple graph. Let us note that 〈G〉 is directed-simple.
Let G be a connected graph. Observe that 〈G〉 is connected.
Let G be an acyclic graph. Let us observe that 〈G〉 is acyclic.
Let G be a tree-like graph. One can verify that 〈G〉 is tree-like.
Let G be an edgeless graph. One can check that 〈G〉 is edgeless and the-

re exists a finite sequence which is empty and graph-yielding and there exists
a finite sequence which is non empty and graph-yielding.

Let p be a non empty, graph-yielding finite sequence. Note that p(1) is
function-like and relation-like and p(len p) is function-like and relation-like and
p(1) is finite and N-defined and p(len p) is finite and N-defined and p(1) is graph-
like and p(len p) is graph-like and there exists a graph-yielding finite sequence
which is non empty, finite, loopless, trivial, non-multi, non-directed-multi, sim-
ple, directed-simple, connected, acyclic, tree-like, and edgeless and there exists
a graph-yielding finite sequence which is non empty, finite, loopless, nontrivial,
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non-multi, non-directed-multi, simple, directed-simple, connected, acyclic, and
tree-like.

Let p be a graph-yielding finite sequence and n be a natural number. Let us
observe that p�n is graph-yielding and p�n is graph-yielding.

Let m be a natural number. Note that smid(p,m, n) is graph-yielding and
〈p(m), . . . , p(n)〉 is graph-yielding.

Let p be a finite, graph-yielding finite sequence. One can verify that p�n is
finite and p�n is finite and smid(p,m, n) is finite and 〈p(m), . . . , p(n)〉 is finite.

Let p be a loopless, graph-yielding finite sequence. One can verify that p�n
is loopless and p�n is loopless and smid(p,m, n) is loopless and 〈p(m), . . . , p(n)〉
is loopless.

Let p be a trivial, graph-yielding finite sequence. One can verify that p�n
is trivial and p�n is trivial and smid(p,m, n) is trivial and 〈p(m), . . . , p(n)〉 is
trivial.

Let p be a nontrivial, graph-yielding finite sequence. One can verify that p�n
is nontrivial and p�n is nontrivial and smid(p,m, n) is nontrivial and
〈p(m), . . . , p(n)〉 is nontrivial.
Let p be a non-multi, graph-yielding finite sequence. One can verify that p�n

is non-multi and p�n is non-multi and smid(p,m, n) is non-multi and
〈p(m), . . . , p(n)〉 is non-multi.
Let p be a non-directed-multi, graph-yielding finite sequence. One can verify

that p�n is non-directed-multi and p�n is non-directed-multi and smid(p,m, n)
is non-directed-multi and 〈p(m), . . . , p(n)〉 is non-directed-multi.

Let p be a simple, graph-yielding finite sequence. One can verify that p�n
is simple and p�n is simple and smid(p,m, n) is simple and 〈p(m), . . . , p(n)〉 is
simple.

Let p be a directed-simple, graph-yielding finite sequence. One can verify that
p�n is directed-simple and p�n is directed-simple and smid(p,m, n) is directed-
simple and 〈p(m), . . . , p(n)〉 is directed-simple.

Let p be a connected, graph-yielding finite sequence. One can verify that p�n
is connected and p�n is connected and smid(p,m, n) is connected and
〈p(m), . . . , p(n)〉 is connected.
Let p be an acyclic, graph-yielding finite sequence. One can verify that p�n

is acyclic and p�n is acyclic and smid(p,m, n) is acyclic and 〈p(m), . . . , p(n)〉 is
acyclic.

Let p be a tree-like, graph-yielding finite sequence. One can verify that p�n
is tree-like and p�n is tree-like and smid(p,m, n) is tree-like and 〈p(m), . . . , p(n)〉
is tree-like.

Let p be an edgeless, graph-yielding finite sequence. One can verify that p�n
is edgeless and p�n is edgeless and smid(p,m, n) is edgeless and 〈p(m), . . . , p(n)〉
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is edgeless.
Let p, q be graph-yielding finite sequences. Let us note that p a q is graph-

yielding and p aa q is graph-yielding.
Let p, q be finite, graph-yielding finite sequences. Let us observe that p a q

is finite and p aa q is finite.
Let p, q be loopless, graph-yielding finite sequences. Let us observe that pa q

is loopless and p aa q is loopless.
Let p, q be trivial, graph-yielding finite sequences. Let us observe that p a q

is trivial and p aa q is trivial.
Let p, q be nontrivial, graph-yielding finite sequences. Let us observe that

p a q is nontrivial and p aa q is nontrivial.
Let p, q be non-multi, graph-yielding finite sequences. Observe that p a q is

non-multi and p aa q is non-multi.
Let p, q be non-directed-multi, graph-yielding finite sequences. Observe that

p a q is non-directed-multi and p aa q is non-directed-multi.
Let p, q be simple, graph-yielding finite sequences. Observe that p a q is

simple and p aa q is simple.
Let p, q be directed-simple, graph-yielding finite sequences. One can verify

that p a q is directed-simple and p aa q is directed-simple.
Let p, q be connected, graph-yielding finite sequences. Note that p a q is

connected and p aa q is connected.
Let p, q be acyclic, graph-yielding finite sequences. Note that pa q is acyclic

and p aa q is acyclic.
Let p, q be tree-like, graph-yielding finite sequences. Note that p a q is tree-

like and p aa q is tree-like.
Let p, q be edgeless, graph-yielding finite sequences. Observe that p a q is

edgeless and p aa q is edgeless.
Let G1, G2 be graphs. Note that 〈G1, G2〉 is graph-yielding.
Let G3 be a graph. Let us note that 〈G1, G2, G3〉 is graph-yielding.
Let G1, G2 be finite graphs. Let us observe that 〈G1, G2〉 is finite.
Let G3 be a finite graph. One can verify that 〈G1, G2, G3〉 is finite.
Let G1, G2 be loopless graphs. Note that 〈G1, G2〉 is loopless.
Let G3 be a loopless graph. Let us note that 〈G1, G2, G3〉 is loopless.
Let G1, G2 be trivial graphs. Let us observe that 〈G1, G2〉 is trivial.
Let G3 be a trivial graph. One can verify that 〈G1, G2, G3〉 is trivial.
Let G1, G2 be non trivial graphs. One can check that 〈G1, G2〉 is nontrivial.
Let G3 be a non trivial graph. One can check that 〈G1, G2, G3〉 is nontrivial.
Let G1, G2 be non-multi graphs. Let us note that 〈G1, G2〉 is non-multi.
Let G3 be a non-multi graph. Observe that 〈G1, G2, G3〉 is non-multi.
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Let G1, G2 be non-directed-multi graphs. One can verify that 〈G1, G2〉 is
non-directed-multi.

Let G3 be a non-directed-multi graph. One can check that 〈G1, G2, G3〉 is
non-directed-multi.

Let G1, G2 be simple graphs. Let us note that 〈G1, G2〉 is simple.
Let G3 be a simple graph. Observe that 〈G1, G2, G3〉 is simple.
LetG1,G2 be directed-simple graphs. One can verify that 〈G1, G2〉 is directed-

simple.
Let G3 be a directed-simple graph. One can check that 〈G1, G2, G3〉 is

directed-simple.
Let G1, G2 be connected graphs. Let us note that 〈G1, G2〉 is connected.
Let G3 be a connected graph. Observe that 〈G1, G2, G3〉 is connected.
Let G1, G2 be acyclic graphs. One can verify that 〈G1, G2〉 is acyclic.
Let G3 be an acyclic graph. One can check that 〈G1, G2, G3〉 is acyclic.
Let G1, G2 be tree-like graphs. Let us note that 〈G1, G2〉 is tree-like.
Let G3 be a tree-like graph. Observe that 〈G1, G2, G3〉 is tree-like.
Let G1, G2 be edgeless graphs. One can verify that 〈G1, G2〉 is edgeless.
Let G3 be an edgeless graph. One can check that 〈G1, G2, G3〉 is edgeless.

4. Construction of Finite Graphs

Now we state the propositions:

(59) Let us consider a graph G2, a finite set V , and a supergraph G1 of G2
extended by the vertices from V . Then there exists a non empty, graph-
yielding finite sequence p such that

(i) p(1) ≈ G2, and

(ii) p(len p) = G1, and

(iii) len p = V \ α + 1, and

(iv) for every element n of dom p such that n ¬ len p − 1 there exists
a vertex v of G1 such that p(n+ 1) is a supergraph of p(n) extended
by v and v /∈ the vertices of p(n),

where α is the vertices of G2.
Proof: Define P[natural number] ≡ for every finite set V for every su-
pergraph G1 of G2 extended by the vertices from V such that
V \ (the vertices of G2) = $1 there exists a non empty, graph-yielding
finite sequence p such that p(1) ≈ G2 and p(len p) = G1 and len p =

V \ (the vertices of G2) + 1 and for every element n of dom p such that
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n ¬ len p−1 there exists a vertex v of G1 such that p(n+1) is a supergraph
of p(n) extended by v and v /∈ the vertices of p(n).
P[0]. For every natural number k such that P[k] holds P[k + 1]. For

every natural number k, P[k]. �

(60) Let us consider a finite graph G, and a subgraph H of G. Suppose
G.size() = H.size(). Then there exists a non empty, finite, graph-yielding
finite sequence p such that

(i) p(1) ≈ H, and

(ii) p(len p) = G, and

(iii) len p = G.order()−H.order() + 1, and

(iv) for every element n of dom p such that n ¬ len p − 1 there exists
a vertex v of G such that p(n+ 1) is a supergraph of p(n) extended
by v and v /∈ the vertices of p(n).

Proof: Set V = (the vertices of G)\(the vertices of H). G is a supergraph
of H extended by the vertices from V . Consider p being a non empty,
graph-yielding finite sequence such that p(1) ≈ H and p(len p) = G and

len p = V \ α + 1, where α is the vertices of H and for every element n
of dom p such that n ¬ len p − 1 there exists a vertex v of G such that
p(n + 1) is a supergraph of p(n) extended by v and v /∈ the vertices of
p(n).

Define P[natural number] ≡ for every element n of dom p such that
$1 = n holds p(n) is finite. For every non zero natural number k such that
P[k] holds P[k+ 1]. For every non zero natural number k, P[k]. For every
element x of dom p, p(x) is finite. �

(61) Let us consider a finite, edgeless graph G, and a subgraph H of G. Then
there exists a non empty, finite, edgeless, graph-yielding finite sequence
p such that

(i) p(1) ≈ H, and

(ii) p(len p) = G, and

(iii) len p = G.order()−H.order() + 1, and

(iv) for every element n of dom p such that n ¬ len p − 1 there exists
a vertex v of G such that p(n+ 1) is a supergraph of p(n) extended
by v and v /∈ the vertices of p(n).

Proof: G.size() = 0. Consider p being a non empty, finite, graph-
yielding finite sequence such that p(1) ≈ H and p(len p) = G and len p =
G.order() − H.order() + 1 and for every element n of dom p such that
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n ¬ len p − 1 there exists a vertex v of G such that p(n + 1) is a super-
graph of p(n) extended by v and v /∈ the vertices of p(n). Define P[natural
number] ≡ for every element n of dom p such that $1 = n holds p(n) is
edgeless.
P[1]. For every non zero natural number k such that P[k] holds P[k+

1]. For every non zero natural number k, P[k]. For every element x of
dom p, p(x) is edgeless. �

(62) Let us consider a finite, edgeless graph G. Then there exists a non empty,
finite, edgeless, graph-yielding finite sequence p such that

(i) p(1) is trivial and edgeless, and

(ii) p(len p) = G, and

(iii) len p = G.order(), and

(iv) for every element n of dom p such that n ¬ len p − 1 there exists
a vertex v of G such that p(n+ 1) is a supergraph of p(n) extended
by v and v /∈ the vertices of p(n).

The theorem is a consequence of (61) and (52).

The scheme FinEdgelessGraphs deals with a unary predicate P and states
that

(Sch. 1) For every finite, edgeless graph G, P[G]

provided

• for every trivial, edgeless graph G, P[G] and

• for every finite, edgeless graph G2 and for every object v and for every
supergraph G1 of G2 extended by v such that v /∈ the vertices of G2 and
P[G2] holds P[G1].

Now we state the propositions:

(63) Let us consider a non empty, graph-yielding finite sequence p. Suppose
p(1) is edgeless and for every element n of dom p such that n ¬ len p − 1
there exists an object v such that p(n+1) is a supergraph of p(n) extended
by v. Then p(len p) is edgeless.
Proof: Define P[natural number] ≡ for every non empty, graph-yielding
finite sequence p such that len p = $1 and p(1) is edgeless and for every
element n of dom p such that n ¬ len p−1 there exists an object v such that
p(n+ 1) is a supergraph of p(n) extended by v holds p(len p) is edgeless.

For every non zero natural number m such that P[m] holds P[m+ 1].
For every non zero natural number m, P[m]. �

(64) Let us consider a finite graph G, and a spanning subgraph H of G. Then
there exists a non empty, finite, graph-yielding finite sequence p such that



About supergraphs. Part III 169

(i) p(1) ≈ H, and

(ii) p(len p) = G, and

(iii) len p = G.size()−H.size() + 1, and

(iv) for every element n of dom p such that n ¬ len p − 1 there exist
vertices v1, v2 of G and there exists an object e such that p(n+ 1) is
a supergraph of p(n) extended by e between vertices v1 and v2 and
e ∈ (the edges of G) \ (the edges of p(n)) and v1, v2 ∈ the vertices
of p(n).

Proof: Define P[natural number] ≡ for every spanning subgraph H of
G such that G.size() − H.size() = $1 there exists a non empty, finite,
graph-yielding finite sequence p such that p(1) ≈ H and p(len p) = G and
len p = G.size()−H.size() + 1 and for every element n of dom p such that
n ¬ len p−1 there exist vertices v1, v2 ofG and there exists an object e such
that p(n+1) is a supergraph of p(n) extended by e between vertices v1 and
v2 and e ∈ (the edges of G) \ (the edges of p(n)) and v1, v2 ∈ the vertices
of p(n).
P[0]. For every natural number k such that P[k] holds P[k + 1]. For

every natural number k, P[k]. �

(65) Let us consider a finite graph G. Then there exists a non empty, finite,
graph-yielding finite sequence p such that

(i) p(1) is edgeless, and

(ii) p(len p) = G, and

(iii) len p = G.size() + 1, and

(iv) for every element n of dom p such that n ¬ len p − 1 there exist
vertices v1, v2 of G and there exists an object e such that p(n+ 1) is
a supergraph of p(n) extended by e between vertices v1 and v2 and
e ∈ (the edges of G) \ (the edges of p(n)) and v1, v2 ∈ the vertices
of p(n).

The theorem is a consequence of (64), (52), and (49).

(66) Let us consider a finite, connected graph G, and a spanning, connected
subgraph H of G. Then there exists a non empty, finite, connected, graph-
yielding finite sequence p such that

(i) p(1) ≈ H, and

(ii) p(len p) = G, and

(iii) len p = G.size()−H.size() + 1, and
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(iv) for every element n of dom p such that n ¬ len p − 1 there exist
vertices v1, v2 of G and there exists an object e such that p(n+ 1) is
a supergraph of p(n) extended by e between vertices v1 and v2 and
e ∈ (the edges of G) \ (the edges of p(n)) and v1, v2 ∈ the vertices
of p(n).

Proof: Consider p being a non empty, finite, graph-yielding finite sequen-
ce such that p(1) ≈ H and p(len p) = G and len p = G.size()−H.size()+1
and for every element n of dom p such that n ¬ len p−1 there exist vertices
v1, v2 of G and there exists an object e such that p(n+ 1) is a supergraph
of p(n) extended by e between vertices v1 and v2 and e ∈ (the edges of
G) \ (the edges of p(n)) and v1, v2 ∈ the vertices of p(n).

Define P[natural number] ≡ for every element n of dom p such that
$1 = n holds p(n) is connected. For every non zero natural number k such
that P[k] holds P[k + 1]. For every non zero natural number k, P[k]. For
every element x of dom p, p(x) is connected. �

(67) Let us consider a finite graph G1, and a subgraph H of G1. Then there
exists a spanning subgraph G2 of G1 and there exists a non empty, finite,
graph-yielding finite sequence p such that H.size() = G2.size() and p(1) ≈
H and p(len p) = G2 and len p = G1.order()−H.order() + 1 and for every
element n of dom p such that n ¬ len p−1 there exists a vertex v of G1 such
that p(n+ 1) is a supergraph of p(n) extended by v and v /∈ the vertices
of p(n).
Proof: Set V = (the vertices of G1) \ (the vertices of H). Set G2 =
the supergraph of H extended by the vertices from V . Consider p be-
ing a non empty, graph-yielding finite sequence such that p(1) ≈ H and

p(len p) = G2 and len p = V \ α + 1, where α is the vertices of H and
for every element n of dom p such that n ¬ len p− 1 there exists a vertex
v of G2 such that p(n + 1) is a supergraph of p(n) extended by v and
v /∈ the vertices of p(n).

Define P[natural number] ≡ for every element n of dom p such that
$1 = n holds p(n) is finite. For every non zero natural number k such that
P[k] holds P[k+ 1]. For every non zero natural number k, P[k]. For every
element x of dom p, p(x) is finite. G2 is a subgraph of G1. Consider v being
a vertex of G2 such that p(n + 1) is a supergraph of p(n) extended by v

and v /∈ the vertices of p(n). �

(68) Let us consider a finite graph G, and a subgraph H of G. Then there
exists a non empty, finite, graph-yielding finite sequence p such that

(i) p(1) ≈ H, and

(ii) p(len p) = G, and
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(iii) len p = G.order() +G.size()− (H.order() +H.size()) + 1, and

(iv) for every element n of dom p such that n ¬ len p−1 holds there exist
vertices v1, v2 of G and there exists an object e such that p(n+ 1) is
a supergraph of p(n) extended by e between vertices v1 and v2 and
e ∈ (the edges of G)\ (the edges of p(n)) and v1, v2 ∈ the vertices of
p(n) or there exists a vertex v of G such that p(n+1) is a supergraph
of p(n) extended by v and v /∈ the vertices of p(n).

The theorem is a consequence of (67), (64), (36), and (60).

(69) Let us consider a finite graph G. Then there exists a non empty, finite,
graph-yielding finite sequence p such that

(i) p(1) is trivial and edgeless, and

(ii) p(len p) = G, and

(iii) len p = G.order() +G.size(), and

(iv) for every element n of dom p such that n ¬ len p−1 holds there exist
vertices v1, v2 of G and there exists an object e such that p(n+ 1) is
a supergraph of p(n) extended by e between vertices v1 and v2 and
e ∈ (the edges of G)\ (the edges of p(n)) and v1, v2 ∈ the vertices of
p(n) or there exists a vertex v of G such that p(n+1) is a supergraph
of p(n) extended by v and v /∈ the vertices of p(n).

The theorem is a consequence of (68), (52), and (49).

The scheme FinGraphs deals with a unary predicate P and states that

(Sch. 2) For every finite graph G, P[G]

provided

• for every trivial, edgeless graph G, P[G] and

• for every finite graph G2 and for every object v and for every supergraph
G1 of G2 extended by v such that v /∈ the vertices of G2 and P[G2] holds
P[G1] and

• for every finite graph G2 and for every vertices v1, v2 of G2 and for every
object e and for every supergraph G1 of G2 extended by e between vertices
v1 and v2 such that e /∈ the edges of G2 and P[G2] holds P[G1].

Now we state the propositions:

(70) Let us consider a non empty, graph-yielding finite sequence p. Suppose
p(1) is finite and for every element n of dom p such that n ¬ len p−1 holds
there exists an object v such that p(n+1) is a supergraph of p(n) extended
by v or there exist objects v1, e, v2 such that p(n+ 1) is a supergraph of
p(n) extended by e between vertices v1 and v2. Then p(len p) is finite.
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Proof: Define Q[natural number] ≡ if $1 ¬ len p, then there exists an ele-
ment k of dom p such that $1 = k and p(k) is finite. Q[1]. For every non
zero natural number m such that Q[m] holds Q[m+ 1].

For every non zero natural number m, Q[m]. Consider k being an ele-
ment of dom p such that len p = k and p(k) is finite. �

(71) Let us consider a finite, tree-like graph G, and a connected subgraph
H of G. Then there exists a non empty, finite, tree-like, graph-yielding
finite sequence p such that

(i) p(1) ≈ H, and

(ii) p(len p) = G, and

(iii) len p = G.order()−H.order() + 1, and

(iv) for every element n of dom p such that n ¬ len p − 1 there exist
vertices v1, v2 of G and there exists an object e such that p(n + 1)
is a supergraph of p(n) extended by v1, v2 and e between them and
e ∈ (the edges of G) \ (the edges of p(n)) and (v1 ∈ the vertices of
p(n) and v2 /∈ the vertices of p(n) or v1 /∈ the vertices of p(n) and
v2 ∈ the vertices of p(n)).

Proof: Define P[natural number] ≡ for every finite, tree-like graph G for
every connected subgraph H of G such that $1 = G.order() − H.order()
there exists a non empty, finite, tree-like, graph-yielding finite sequence p
such that p(1) ≈ H and p(len p) = G and len p = G.order()−H.order()+1
and for every element n of dom p such that n ¬ len p−1 there exist vertices
v1, v2 of G and there exists an object e such that p(n+ 1) is a supergraph
of p(n) extended by v1, v2 and e between them and e ∈ (the edges of
G)\(the edges of p(n)) and (v1 ∈ the vertices of p(n) and v2 /∈ the vertices
of p(n) or v1 /∈ the vertices of p(n) and v2 ∈ the vertices of p(n)).
P[0]. For every natural number k such that P[k] holds P[k + 1]. For

every natural number k, P[k]. �

(72) Let us consider a finite, tree-like graph G. Then there exists a non empty,
finite, tree-like, graph-yielding finite sequence p such that

(i) p(1) is trivial and edgeless, and

(ii) p(len p) = G, and

(iii) len p = G.order(), and

(iv) for every element n of dom p such that n ¬ len p − 1 there exist
vertices v1, v2 of G and there exists an object e such that p(n + 1)
is a supergraph of p(n) extended by v1, v2 and e between them and
e ∈ (the edges of G) \ (the edges of p(n)) and (v1 ∈ the vertices of
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p(n) and v2 /∈ the vertices of p(n) or v1 /∈ the vertices of p(n) and
v2 ∈ the vertices of p(n)).

The theorem is a consequence of (71) and (52).

The scheme FinTrees deals with a unary predicate P and states that

(Sch. 3) For every finite, tree-like graph G, P[G]

provided

• for every trivial, edgeless graph G, P[G] and

• for every finite, tree-like graph G2 and for every vertex v of G2 and for
every objects e, w such that e /∈ the edges of G2 and w /∈ the vertices of
G2 and P[G2] holds for every supergraph G1 of G2 extended by v, w and
e between them, P[G1] and for every supergraph G1 of G2 extended by
w, v and e between them, P[G1].

Now we state the propositions:

(73) Let us consider a non empty, graph-yielding finite sequence p. Suppose
p(1) is tree-like and for every element n of dom p such that n ¬ len p− 1
there exist objects v1, e, v2 such that p(n + 1) is a supergraph of p(n)
extended by v1, v2 and e between them. Then p(len p) is tree-like.
Proof: Define Q[natural number] ≡ if $1 ¬ len p, then there exists an ele-
ment k of dom p such that $1 = k and p(k) is tree-like. Q[1].

For every non zero natural number m such that Q[m] holds Q[m+ 1].
For every non zero natural number m, Q[m]. Consider k being an element
of dom p such that len p = k and p(k) is tree-like. �

(74) Let us consider a finite, connected graph G. Then there exists a non
empty, finite, connected, graph-yielding finite sequence p such that

(i) p(1) is trivial and edgeless, and

(ii) p(len p) = G, and

(iii) len p = G.size() + 1, and

(iv) for every element n of dom p such that n ¬ len p−1 holds there exist
vertices v1, v2 of G and there exists an object e such that p(n + 1)
is a supergraph of p(n) extended by v1, v2 and e between them and
e ∈ (the edges of G) \ (the edges of p(n)) and (v1 ∈ the vertices of
p(n) and v2 /∈ the vertices of p(n) or v1 /∈ the vertices of p(n) and
v2 ∈ the vertices of p(n)) or there exist vertices v1, v2 of G and there
exists an object e such that p(n+1) is a supergraph of p(n) extended
by e between vertices v1 and v2 and e ∈ (the edges of G)\ (the edges
of p(n)) and v1, v2 ∈ the vertices of p(n).
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The theorem is a consequence of (72), (66), and (36).

The scheme FinConnectedGraphs deals with a unary predicate P and states
that

(Sch. 4) For every finite, connected graph G, P[G]

provided

• for every trivial, edgeless graph G, P[G] and

• for every finite, connected graph G2 and for every vertex v of G2 and for
every objects e, w such that e /∈ the edges of G2 and w /∈ the vertices of
G2 and P[G2] holds for every supergraph G1 of G2 extended by v, w and
e between them, P[G1] and for every supergraph G1 of G2 extended by
w, v and e between them, P[G1] and

• for every finite, connected graph G2 and for every vertices v1, v2 of G2
and for every object e and for every supergraph G1 of G2 extended by e

between vertices v1 and v2 such that e /∈ the edges of G2 and P[G2] holds
P[G1].

Now we state the propositions:

(75) Let us consider a non empty, graph-yielding finite sequence p. Suppose
p(1) is connected and for every element n of dom p such that n ¬ len p− 1
there exist objects v1, e, v2 such that p(n + 1) is supergraph of p(n)
extended by v1, v2 and e between them or supergraph of p(n) extended
by e between vertices v1 and v2. Then p(len p) is connected.
Proof: Define Q[natural number] ≡ if $1 ¬ len p, then there exists an ele-
ment k of dom p such that $1 = k and p(k) is connected. Q[1]. For every
non zero natural number m such that Q[m] holds Q[m+ 1]. For every non
zero natural number m, Q[m]. �

(76) Let us consider a graph G2, an object v, a set V1, a finite set V2, and
a supergraph G1 of G2 extended by vertex v and edges between v and
V1 ∪ V2 of G2. Suppose V1 ∪ V2 ⊆ the vertices of G2 and v /∈ the vertices
of G2 and V1 misses V2. Then there exists a non empty, graph-yielding
finite sequence p such that

(i) p(1) = G2, and

(ii) p(len p) = G1, and

(iii) len p = V2 + 2, and

(iv) p(2) is a supergraph of G2 extended by vertex v and edges between
v and V1 of G2, and
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(v) for every element n of dom p such that 2 ¬ n ¬ len p− 1 there exists
a vertex w of G2 and there exists an object e such that e ∈ (the edges
of G1)\(the edges of p(n)) and p(n+1) is supergraph of p(n) extended
by e between vertices v and w or supergraph of p(n) extended by e

between vertices w and v.

Proof: Define P[natural number] ≡ for every finite set V2 for every su-
pergraph G1 of G2 extended by vertex v and edges between v and V1 ∪V2
of G2 such that V1∪V2 ⊆ the vertices of G2 and v /∈ the vertices of G2 and
V1 misses V2 and V2 = $1 there exists a non empty, graph-yielding finite
sequence p such that p(1) = G2 and p(len p) = G1 and len p = V2 + 2 and
p(2) is a supergraph of G2 extended by vertex v and edges between v and
V1 of G2 and for every element n of dom p such that 2 ¬ n ¬ len p− 1.

There exists a vertex w of G2 and there exists an object e such that
e ∈ (the edges of G1) \ (the edges of p(n)) and p(n + 1) is supergraph
of p(n) extended by e between vertices v and w or supergraph of p(n)
extended by e between vertices w and v. P[0]. For every natural number
k such that P[k] holds P[k + 1]. For every natural number k, P[k]. �

(77) Let us consider a graph G2, an object v, a finite set V , and a supergraph
G1 of G2 extended by vertex v and edges between v and V of G2. Suppose
V ⊆ the vertices of G2 and v /∈ the vertices of G2. Then there exists a non
empty, graph-yielding finite sequence p such that

(i) p(1) = G2, and

(ii) p(len p) = G1, and

(iii) len p = V + 2, and

(iv) p(2) is a supergraph of G2 extended by v, and

(v) for every element n of dom p such that 2 ¬ n ¬ len p− 1 there exists
a vertex w of G2 and there exists an object e such that e ∈ (the edges
of G1)\(the edges of p(n)) and p(n+1) is supergraph of p(n) extended
by e between vertices v and w or supergraph of p(n) extended by e

between vertices w and v.

The theorem is a consequence of (76).

(78) Let us consider a graph G2, an object v, a non empty, finite set V , and
a supergraph G1 of G2 extended by vertex v and edges between v and V

of G2. Suppose V ⊆ the vertices of G2 and v /∈ the vertices of G2. Then
there exists a non empty, graph-yielding finite sequence p such that

(i) p(1) = G2, and

(ii) p(len p) = G1, and
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(iii) len p = V + 1, and

(iv) there exists a vertex w of G2 and there exists an object e such that
e ∈ (the edges of G1)\(the edges of G2) and p(2) is supergraph of G2
extended by v, w and e between them or supergraph of G2 extended
by w, v and e between them, and

(v) for every element n of dom p such that 2 ¬ n ¬ len p− 1 there exists
a vertex w of G2 and there exists an object e such that e ∈ (the edges
of G1)\(the edges of p(n)) and p(n+1) is supergraph of p(n) extended
by e between vertices v and w or supergraph of p(n) extended by e

between vertices w and v.

The theorem is a consequence of (76).

(79) Let us consider a finite, simple graph G, a set W , and a subgraph H of
G induced by W . Then there exists a non empty, finite, simple, graph-
yielding finite sequence p such that

(i) p(1) ≈ H, and

(ii) p(len p) = G, and

(iii) len p = G.order()−H.order() + 1, and

(iv) for every element n of dom p such that n ¬ len p − 1 there exists
an object v and there exists a finite set V such that v ∈ (the vertices
of G)\(the vertices of p(n)) and V ⊆ the vertices of p(n) and p(n+1)
is a supergraph of p(n) extended by vertex v and edges between v

and V of p(n).

Proof: Define P[natural number] ≡ for every finite, simple graph G

for every set W for every subgraph H of G induced by W such that
G.order() − H.order() = $1 there exists a non empty, finite, simple,
graph-yielding finite sequence p such that p(1) ≈ H and p(len p) = G

and len p = G.order() − H.order() + 1 and for every element n of dom p

such that n ¬ len p − 1 there exists an object v and there exists a fi-
nite set V such that v ∈ (the vertices of G) \ (the vertices of p(n)) and
V ⊆ the vertices of p(n) and p(n+ 1) is a supergraph of p(n) extended by
vertex v and edges between v and V of p(n).
P[0]. For every natural number k such that P[k] holds P[k + 1]. For

every natural number k, P[k]. �

(80) Let us consider a finite, simple graph G. Then there exists a non empty,
finite, simple, graph-yielding finite sequence p such that

(i) p(1) is trivial and edgeless, and

(ii) p(len p) = G, and
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(iii) len p = G.order(), and

(iv) for every element n of dom p such that n ¬ len p − 1 there exists
an object v and there exists a finite set V such that v ∈ (the vertices
of G)\(the vertices of p(n)) and V ⊆ the vertices of p(n) and p(n+1)
is a supergraph of p(n) extended by vertex v and edges between v

and V of p(n).

The theorem is a consequence of (79) and (52).

The scheme FinSimpleGraphs deals with a unary predicate P and states that

(Sch. 5) For every finite, simple graph G, P[G]

provided

• for every trivial, edgeless graph G, P[G] and

• for every finite, simple graph G2 and for every object v and for every
finite set V and for every supergraph G1 of G2 extended by vertex v

and edges between v and V of G2 such that v /∈ the vertices of G2 and
V ⊆ the vertices of G2 and P[G2] holds P[G1].

Now we state the propositions:

(81) Let us consider a non empty, graph-yielding finite sequence p. Suppose
p(1) is simple and for every element n of dom p such that n ¬ len p − 1
there exists an object v and there exists a set V such that p(n + 1) is
a supergraph of p(n) extended by vertex v and edges between v and V of
p(n). Then p(len p) is simple.
Proof: Define Q[natural number] ≡ if $1 ¬ len p, then there exists an ele-
ment k of dom p such that $1 = k and p(k) is simple. Q[1]. For every non
zero natural number m such that Q[m] holds Q[m+1]. For every non zero
natural number m, Q[m]. �

(82) Let us consider a finite, simple, connected graph G. Then there exists
a non empty, finite, simple, connected, graph-yielding finite sequence p
such that

(i) p(1) is trivial and edgeless, and

(ii) p(len p) = G, and

(iii) len p = G.order(), and

(iv) for every element n of dom p such that n ¬ len p − 1 there exists
an object v and there exists a non empty, finite set V such that
v ∈ (the vertices of G) \ (the vertices of p(n)) and V ⊆ the vertices
of p(n) and p(n + 1) is a supergraph of p(n) extended by vertex v

and edges between v and V of p(n).
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Proof: Define P[natural number] ≡ for every finite, simple, connected
graph G such that G.order() = $1 there exists a non empty, finite, simple,
connected, graph-yielding finite sequence p such that p(1) is trivial and
edgeless and p(len p) = G and len p = G.order() and for every element n
of dom p such that n ¬ len p− 1 there exists an object v and there exists
a non empty, finite set V such that v ∈ (the vertices of G) \ (the vertices
of p(n)) and V ⊆ the vertices of p(n) and p(n+ 1) is a supergraph of p(n)
extended by vertex v and edges between v and V of p(n).
P[1]. For every non zero natural number k such that P[k] holds P[k+

1]. For every non zero natural number k, P[k]. �

The scheme FinSimpleConnectedGraphs deals with a unary predicate P and
states that

(Sch. 6) For every finite, simple, connected graph G, P[G]

provided

• for every trivial, edgeless graph G, P[G] and

• for every finite, simple, connected graph G2 and for every object v and for
every non empty, finite set V and for every supergraph G1 of G2 extended
by vertex v and edges between v and V of G2 such that v /∈ the vertices
of G2 and V ⊆ the vertices of G2 and P[G2] holds P[G1].

Now we state the proposition:

(83) Let us consider a non empty, graph-yielding finite sequence p. Suppose
p(1) is simple and connected and for every element n of dom p such that
n ¬ len p− 1 there exists an object v and there exists a non empty set V
such that p(n+ 1) is a supergraph of p(n) extended by vertex v and edges
between v and V of p(n). Then p(len p) is simple and connected.
Proof: Define Q[natural number] ≡ if $1 ¬ len p, then there exists an ele-
ment k of dom p such that $1 = k and p(k) is simple and connected. Q[1].

For every non zero natural number m such that Q[m] holds Q[m+ 1].
For every non zero natural number m, Q[m]. �
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