

Formalization of the MRDP Theorem in the $Mizar System^1$

Karol Pąk[®] Institute of Informatics University of Białystok Poland

Summary. This article is the final step of our attempts to formalize the negative solution of Hilbert's tenth problem.

In our approach, we work with the Pell's Equation defined in [2]. We analyzed this equation in the general case to show its solvability as well as the cardinality and shape of all possible solutions. Then we focus on a special case of the equation, which has the form $x^2 - (a^2 - 1)y^2 = 1$ [8] and its solutions considered as two sequences $\{x_i(a)\}_{i=0}^{\infty}, \{y_i(a)\}_{i=0}^{\infty}$. We showed in [1] that the *n*-th element of these sequences can be obtained from lists of several basic Diophantine relations as linear equations, finite products, congruences and inequalities, or more precisely that the equation $x = y_i(a)$ is Diophantine. Following the post-Matiyasevich results we show that the equality determined by the value of the power function $y = x^z$ is Diophantine, and analogously property in cases of the binomial coefficient, factorial and several product [9].

In this article, we combine analyzed so far Diophantine relation using conjunctions, alternatives as well as substitution to prove the bounded quantifier theorem. Based on this theorem we prove MDPR-theorem that *every recursively enumerable set is Diophantine*, where recursively enumerable sets have been defined by the Martin Davis normal form.

The formalization by means of Mizar system [5], [7], [4] follows [10], Z. Adamowicz, P. Zbierski [3] as well as M. Davis [6].

MSC: 11D45 68T99 03B35

Keywords: Hilbert's 10th problem; Diophantine relations

MML identifier: HILB10_5, version: 8.1.09 5.57.1355

(C) 2019 University of Białystok CC-BY-SA License ver. 3.0 or later ISSN 1426-2630(Print), 1898-9934(Online)

¹This work has been financed by the resources of the Polish National Science Centre granted by decision no. DEC-2015/19/D/ST6/01473.

KAROL PĄK

1. Preliminaries

From now on $i, j, n, n_1, n_2, m, k, l, u$ denote natural numbers, i_1, i_2, i_3, i_4 , i_5, i_6 denote elements of n, p, q denote *n*-element finite 0-sequences of \mathbb{N} , and a, b, c, d, e, f denote integers.

Let n be a natural number. Let us note that idseq(n) is \mathbb{Z} -valued.

Let x be an n-element, natural-valued finite 0-sequence and p be a \mathbb{Z} -valued polynomial of $n, \mathbb{R}_{\mathrm{F}}$. One can check that $\mathrm{eval}(p, {}^{@}x)$ is integer.

Now we state the proposition:

(1) Let us consider a \mathbb{Z} -valued polynomial p of n, \mathbb{R}_F , and n-element finite 0-sequences x, y of \mathbb{N} . Suppose $k \neq 0$ and for every i such that $i \in n$ holds $k \mid x(i)-y(i)$. Then $k \mid (\operatorname{eval}(p, {}^{@}x) \operatorname{\mathbf{qua}} \operatorname{integer}) - (\operatorname{eval}(p, {}^{@}y) \operatorname{\mathbf{qua}} \operatorname{integer})$. PROOF: Reconsider $f_1 = \mathbb{R}_F$ as a field. Reconsider $p_1 = p$ as a polynomial of n, f_1 . Reconsider $x_2 = {}^{@}x, y_2 = {}^{@}y$ as a function from n into the carrier of f_1 . Set $s_3 = \operatorname{SgmX}(\operatorname{BagOrder} n, \operatorname{Support} p_1)$. Consider X being a finite sequence of elements of the carrier of f_1 such that $\operatorname{len} X = \operatorname{len} s_3$ and $\operatorname{eval}(p_1, x_2) = \sum X$ and for every element i of \mathbb{N} such that $1 \leq i \leq \operatorname{len} X$ holds $X_{/i} = p_1 \cdot s_{3/i} \cdot (\operatorname{eval}(s_{3/i}, x_2))$.

Consider Y being a finite sequence of elements of the carrier of f_1 such that len $Y = \text{len } s_3$ and $\text{eval}(p_1, y_2) = \sum Y$ and for every element i of \mathbb{N} such that $1 \leq i \leq \text{len } Y$ holds $Y_{i} = p_1 \cdot s_{3/i} \cdot (\text{eval}(s_{3/i}, y_2))$. Reconsider $Y_2 = Y, X_4 = X$ as a finite sequence of elements of \mathbb{R} . Define $\mathcal{P}[\text{natural number}] \equiv \text{if } \$_1 \leq \text{len } X$, then $\sum (X_4 | \$_1) - \sum (Y_2 | \$_1)$ is an integer and for every integer d such that $d = \sum (X_4 | \$_1) - \sum (Y_2 | \$_1)$ holds $k \mid d$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. $\mathcal{P}[i]$. \Box

Let f be a \mathbb{Z} -valued function. Let us note that -f is \mathbb{Z} -valued.

The scheme *SCH1* deals with a binary predicate \mathcal{P} and a finite-0-sequenceyielding finite 0-sequence f and states that

- (Sch. 1) $\{f(i)(j), \text{ where } i, j \text{ are natural numbers } : \mathcal{P}[i, j]\}$ is finite. Now we state the propositions:
 - (2) If $m \ge n > 0$, then $1 + m! \cdot (\text{idseq}(n))$ is a CR-sequence. PROOF: Set $h = 1 + m! \cdot (\text{idseq}(n))$. Define $\mathcal{F}(\text{natural number}) = m! \cdot \$_1 + 1$. For every *i* such that $i \in \text{dom } h$ holds $h(i) = \mathcal{F}(i)$. *h* is positive yielding. For every natural numbers *i*, *j* such that *i*, *j* \in dom *h* and *i* < *j* holds h(i)and h(j) are relatively prime. *h* is Chinese remainder. \Box
 - (3) Let us consider a prime number p, and a finite sequence f of elements of \mathbb{N} . Suppose f is positive yielding and $p \mid \prod f$. Then there exists i such that
 - (i) $i \in \text{dom } f$, and

(ii) $p \mid f(i)$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every finite sequence } f \text{ of elements}$ of N such that len $f = \$_1$ and f is positive yielding and $p \mid \prod f$ there exists *i* such that $i \in \text{dom } f$ and $p \mid f(i)$. $\mathcal{P}[0]$. If $\mathcal{P}[n]$, then $\mathcal{P}[n+1]$. $\mathcal{P}[n]$. \Box

2. Selected Operations on Polynomials

Let n be a set and p be a series of n, \mathbb{R}_{F} . The functor |p| yielding a series of $n, \mathbb{R}_{\mathrm{F}}$ is defined by

(Def. 1) for every bag b of n, it(b) = |p(b)|.

Now we state the proposition:

(4) Let us consider a set n, and a series p of n, \mathbb{R}_{F} . Then Support p =Support |p|.

Let n be an ordinal number and p be a polynomial of $n, \mathbb{R}_{\mathrm{F}}$. Let us note that |p| is finite-Support.

Let n be a set, S be a non empty zero structure, and p be a finite-Support series of n, S. One can check that Support p is finite.

Let n be an ordinal number, L be an add-associative, right zeroed, right complementable, non empty additive loop structure, and p be a polynomial of

n,L. The functor $\sum \texttt{coeff}(p)$ yielding an element of L is defined by the term (Def. 2) $\sum p \cdot (\text{SgmX}(\text{BagOrder} n, \text{Support} p)).$

The functor degree(p) yielding a natural number is defined by

- (i) there exists a bag s of n such that $s \in \text{Support } p$ and it = degree(s)(Def. 3) and for every bag s_1 of n such that $s_1 \in \text{Support } p$ holds degree $(s_1) \leq s_1$ *it*, **if** $p \neq 0_n L$,
 - (ii) it = 0, otherwise.

Now we state the propositions:

- (5) Let us consider an ordinal number n, and a bag b of n. Then degree(b) = $\sum b \cdot (\text{SgmX}(\subseteq_n, \text{support } b)).$
- (6) Let us consider an ordinal number n, an add-associative, right zeroed, right complementable, non empty additive loop structure L, and a polynomial p of n,L. Then degree(p) = 0 if and only if Support $p \subseteq$ $\{ EmptyBag n \}.$

PROOF: If degree(p) = 0, then Support $p \subseteq \{\text{EmptyBag } n\}$. Consider s being a bag of n such that $s \in \text{Support } p$ and degree(p) = degree(s). \Box

(7) Let us consider an ordinal number n, an add-associative, right zeroed, right complementable, non empty additive loop structure L, a polynomial p of n,L, and a bag b of n. If $b \in \text{Support } p$, then degree $(p) \ge \text{degree}(b)$.

(8) Let us consider an ordinal number n, and a polynomial p of $n, \mathbb{R}_{\mathrm{F}}$. If $|p| = 0_n(\mathbb{R}_{\mathrm{F}})$, then $p = 0_n(\mathbb{R}_{\mathrm{F}})$.

Let n be a set. One can verify that $|0_n(\mathbb{R}_F)|$ reduces to $0_n(\mathbb{R}_F)$. Now we state the propositions:

- (9) Let us consider an ordinal number n, and a polynomial p of n, \mathbb{R}_F . Then degree(p) = degree(|p|). The theorem is a consequence of (8) and (4).
- (10) Let us consider an ordinal number n, a bag b of n, and a real number r. Suppose $r \ge 1$. Let us consider a function x from n into the carrier of \mathbb{R}_{F} . Suppose for every object i such that $i \in \mathrm{dom} x$ holds $|x(i)| \le r$. Then $|\operatorname{eval}(b, x)| \le r^{\operatorname{degree}(b)}$.

PROOF: Reconsider $f_1 = \mathbb{R}_F$ as a field. Set $s_2 = \text{SgmX}(\subseteq_n, \text{support } b)$. Set $B = b \cdot s_2$. Consider y being a finite sequence of elements of f_1 such that $\text{len } y = \text{len } s_2$ and $\text{eval}(b, x) = \prod y$ and for every element i of \mathbb{N} such that $1 \leq i \leq \text{len } y$ holds $y_{/i} = \text{power}_{\mathbb{R}_F}(x \cdot s_{2/i}, B_{/i})$.

Define $\mathcal{P}[\text{natural number}] \equiv \text{if } \$_1 \leq \text{len } y$, then $\prod(y | \$_1)$ is a real number and for every real number P such that $P = \prod(y | \$_1)$ holds $|P| \leq r^{\sum(B | \$_1)}$. For every i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every $i, \mathcal{P}[i]$. \Box

(11) Let us consider an ordinal number n, a polynomial p of n, \mathbb{R}_F , and a real number r. Suppose $r \ge 1$. Let us consider a function x from n into the carrier of \mathbb{R}_F . Suppose for every object i such that $i \in \text{dom } x$ holds $|x(i)| \le r$. Then $|\operatorname{eval}(p, x)| \le (\sum \operatorname{coeff}(|p|)) \cdot (r^{\operatorname{degree}(p)})$.

PROOF: Reconsider $f_1 = \mathbb{R}_F$ as a field. Reconsider $p_1 = p$, $A_1 = |p|$ as a polynomial of n, f_1 . Reconsider $x_2 = x$ as a function from n into the carrier of f_1 . Set $S_1 = \text{SgmX}(\text{BagOrder } n, \text{Support } p_1)$. Reconsider $H = A_1 \cdot S_1$ as a finite sequence of elements of the carrier of \mathbb{R}_F . $\sum \text{coeff}(|p|) = \sum A_1 \cdot S_1$.

Consider y being a finite sequence of elements of the carrier of f_1 such that len $y = \text{len } S_1$ and $\text{eval}(p, x) = \sum y$ and for every element i of \mathbb{N} such that $1 \leq i \leq \text{len } y$ holds $y_{i} = p_1 \cdot S_{1/i} \cdot (\text{eval}(S_{1/i}, x_2))$. Reconsider Y = y as a finite sequence of elements of \mathbb{R} . Define $\mathcal{P}[\text{natural number}] \equiv \text{if } \$_1 \leq \text{len } y$, then $|\sum (Y \upharpoonright \$_1)| \leq (\sum (H \upharpoonright \$_1)) \cdot (r^{\text{degree}(p)})$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every natural number $i, \mathcal{P}[i]$. \Box

Let n be an ordinal number and p be a \mathbb{Z} -valued polynomial of $n, \mathbb{R}_{\mathrm{F}}$. Let us note that |p| is natural-valued and there exists a polynomial of $n, \mathbb{R}_{\mathrm{F}}$ which is natural-valued.

Let O be an ordinal number and p be a natural-valued polynomial of O, \mathbb{R}_F . Let us observe that $\sum \operatorname{coeff}(p)$ is natural.

3. Selected Subsets of Zero Based Finite Sequences of $\mathbb N$ as Diophantine Sets

The scheme SubsetDioph deals with a natural number n and a 4-ary predicate \mathcal{P} and a set \mathcal{S} and states that

- (Sch. 2) For every elements i_2 , i_3 , i_4 of n, $\{p, \text{ where } p \text{ is an } n\text{-element finite 0-sequence of } \mathbb{N} :$ for every natural number i such that $i \in \mathcal{S}$ holds $\mathcal{P}[p(i), p(i_2), p(i_3), p(i_4)]\}$ is a Diophantine subset of the $n\text{-xtuples of } \mathbb{N}$ provided
 - for every elements i_1 , i_2 , i_3 , i_4 of n, $\{p$, where p is an n-element finite 0-sequence of $\mathbb{N} : \mathcal{P}[p(i_1), p(i_2), p(i_3), p(i_4)]\}$ is a Diophantine subset of the n-xtuples of \mathbb{N} and
 - $\mathcal{S} \subseteq \mathbb{Z}_n$.

Now we state the propositions:

(12) Suppose $n_1 + n_2 \leq n$.

Then $\{p: p(i_1) \ge k \cdot ((p(i_2)^2 + 1) \cdot (\prod (1 + p_{|n_1|} n_2)) \cdot (l \cdot p(i_3) + m)^{i \cdot p(i_4) + j})\}$ is a Diophantine subset of the *n*-xtuples of \mathbb{N} .

PROOF: Define $\mathcal{F}_0(\text{natural number, natural number, natural number}) = \$_1^{\$_2}$. Define $\mathcal{P}_0[\text{natural number, natural number, natural object, natural number, natural number, natural number] <math>\equiv 1 \cdot \$_1 \geq k \cdot \$_3 + 0$. For every i_1 , i_2 , i_3 , i_4 , and i_5 , $\{p : \mathcal{P}_0[p(i_1), p(i_2), \mathcal{F}_0(p(i_3), p(i_4), p(i_5)), p(i_3), p(i_4), p(i_5)]\}$ is a Diophantine subset of the *n*-xtuples of N. Define $\mathcal{F}_1(\text{natural number, natural number, natural number)} = i \cdot \$_1 + j$. Define $\mathcal{P}_1[\text{natural number, natural number$

Define $\mathcal{P}_2[$ natural number, natural number, natural object, natural number, natural number, natural number] $\equiv \$_1 \ge k \cdot (\$_3^{i \cdot \$_2 + j})$. For every i_1 , i_2 , i_3 , i_4 , and i_5 , $\{p : \mathcal{P}_2[p(i_1), p(i_2), \mathcal{F}_2(p(i_3), p(i_4), p(i_5)), p(i_3), p(i_4), p(i_5)]\}$ is a Diophantine subset of the *n*-xtuples of N. Define $\mathcal{P}_3[$ natural number, natural number, natural object, natural number, natural number, natural number] $\equiv \$_1 \ge k \cdot (\$_6 \cdot \$_3^{i \cdot \$_2 + j})$. For every i_1 , i_2 , i_3 , i_4 , and i_5 , $\{p : \mathcal{P}_3[p(i_1), p(i_2), \mathcal{F}_2(p(i_3), p(i_4), p(i_5)), p(i_3), p(i_4), p(i_5)]\}$ is a Diophantine subset of the *n*-xtuples of N. Define $\mathcal{F}_5[$ natural number, natural number, natural number, natural number) = $1 \cdot \$_1 + 1$. Define $\mathcal{F}_5[$ natural number, natural number) = $1 \cdot \$_1 + 1$. Define $\mathcal{P}_5[$ natural number, natural numbe

 $p(i_4), p(i_5)), p(i_3), p(i_4), p(i_5)]$ is a Diophantine subset of the *n*-xtuples of N. Define $\mathcal{G}($ natural number, natural number, natural number) = $l \cdot$ $\$_1+m$. Define $\mathcal{R}_1[$ natural number, natural number, natural object, natural number, natural number, natural number] $\equiv \$_1 \ge k \cdot (\$_3 \cdot \$_5 \cdot (\$_6 + 1)^{i \cdot \$_2 + j})$. For every i_1, i_2, i_3, i_4 , and $i_5, \{p : \mathcal{R}_1[p(i_1), p(i_2), \mathcal{G}(p(i_3), p(i_4), p(i_5)), p(i_3), p(i_4), p(i_5)]\}$ is a Diophantine subset of the *n*-xtuples of N.

Define $\mathcal{P}_6[$ natural number, natural number, natural object, natural number, natural number, natural number, natural number] $\equiv \$_1 \ge k \cdot ((\$_3 + 1) \cdot \$_5 \cdot (l \cdot \$_6 + m)^{i \cdot \$_2 + j})$. Define $\mathcal{F}_6($ natural number, natural number, natural number) = $1 \cdot \$_1 \cdot \$_1$. For every n, i_1, i_2, i_3, i_4 , and $i_5, \{p : \mathcal{P}_6[p(i_1), p(i_2), \mathcal{F}_6(p(i_3), p(i_4), p(i_5)), p(i_3), p(i_4), p(i_5)]\}$ is a Diophantine subset of the n-xtuples of \mathbb{N} . Set X = n + 1. Reconsider $N = n, I_1 = i_1, I_2 = i_2, I_3 = i_3, I_4 = i_4$ as an element of X. Define $\mathcal{P}_7[$ finite 0-sequence of $\mathbb{N}] \equiv \$_1(I_1) \ge k \cdot ((1 \cdot \$_1(I_2) \cdot \$_1(I_2) + 1) \cdot \$_1(N) \cdot (l \cdot \$_1(I_3) + m)^{i \cdot \$_1(I_4) + j})$. Define $\mathcal{Q}_7[$ finite 0-sequence of $\mathbb{N}] \equiv \$_1(N) = \prod(1 + \$_1_{|n_1|} \restriction n_2)$. Set $P_1 = \{p, \text{ where } p \text{ is an } X$ -element finite 0-sequence of $\mathbb{N} : \mathcal{P}_7[p]$ and $\mathcal{Q}_7[p]\}$. P_1 is a Diophantine subset of the X-xtuples of \mathbb{N} . Define $\mathcal{S}[$ finite 0-sequence of $\mathbb{N}] \equiv \$_1(i_1) \ge k \cdot ((\$_1(i_2)^2 + 1) \cdot (\prod(1 + \$_1_{|n_1|} \restriction n_2)) \cdot (l \cdot \$_1(i_3) + m)^{i \cdot \$_1(i_4) + j})$. Set $S = \{p : \mathcal{S}[p]\}$. $S \subseteq$ the n-xtuples of \mathbb{N} . \Box

- (13) Let us consider a \mathbb{Z} -valued polynomial P of $k,\mathbb{R}_{\mathrm{F}}$, an integer a, a permutation p_2 of n, and i_1 . Suppose $k \leq n$. Then $\{p : \text{for every } k\text{-element finite } 0\text{-sequence } q \text{ of } \mathbb{N} \text{ such that } q = p \cdot p_2 \upharpoonright k \text{ holds } a \cdot p(i_1) = \operatorname{eval}(P, {}^{\textcircled{m}}q)\}$ is a Diophantine subset of the n-xtuples of \mathbb{N} .
- (14) Let us consider a \mathbb{Z} -valued polynomial P of $k + 1, \mathbb{R}_F$, an integer a, n, i_1 , and i_2 . Suppose $k + 1 \leq n$ and $k \in i_2$. Then $\{p : \text{for every } (k+1)\text{-element}$ finite 0-sequence q of \mathbb{N} such that $q = \langle p(i_2) \rangle \cap (p \upharpoonright k)$ holds $a \cdot p(i_1) =$ $\operatorname{eval}(P, {}^{\textcircled{m}}q)\}$ is a Diophantine subset of the n-xtuples of \mathbb{N} . PROOF: Set $k_1 = k + 1$. Reconsider $I_5 = \operatorname{id}_k$ as a finite 0-sequence. Set $f = \langle i_2 \rangle \cap I_5$. Set $R = \operatorname{rng} f$. Consider g being a function such that gis one-to-one and dom $g = n \setminus k_1$ and $\operatorname{rng} g = n \setminus R$. Reconsider $f_1 =$ $f + \cdot g$ as a function from n into n. Define $\mathcal{Q}[\text{finite 0-sequence of } \mathbb{N}] \equiv$ for every k_1 -element finite 0-sequence q of \mathbb{N} such that $q = \$_1 \cdot f_1 \upharpoonright k_1$ holds $a \cdot \$_1(i_1) = \operatorname{eval}(P, {}^{\textcircled{m}}q)$. Define $\mathcal{R}[\text{finite 0-sequence of } \mathbb{N}] \equiv$ for every (k + 1)-element finite 0-sequence q of \mathbb{N} such that $q = \langle \$_1(i_2) \rangle \cap (\$_1 \upharpoonright k)$ holds $a \cdot \$_1(i_1) = \operatorname{eval}(P, {}^{\textcircled{m}}q)$. For every n-element finite 0-sequence p of \mathbb{N} , $\mathcal{Q}[p]$ iff $\mathcal{R}[p]$. $\{p : \mathcal{Q}[p]\} = \{q : \mathcal{R}[q]\}$. \Box
- (15) Let us consider a \mathbb{Z} -valued polynomial P of $k+1, \mathbb{R}_{\mathrm{F}}$, n, i_1 , and i_2 . Suppose $k+1 \leq n$ and $k \in i_1$. Then $\{p : \text{for every } (k+1)\text{-element finite 0-sequence } q \text{ of } \mathbb{N} \text{ such that } q = \langle p(i_1) \rangle \cap (p \upharpoonright k) \text{ holds } \operatorname{eval}(P, {}^{\textcircled{o}}q) \equiv 0 \pmod{p(i_2)}\}$ is

a Diophantine subset of the *n*-xtuples of \mathbb{N} .

PROOF: Set $k_1 = k + 1$. Set X = n + 1. Reconsider N = n, $I_1 = i_1$, $I_2 = i_2$ as an element of X. Define $\mathcal{P}[\text{finite 0-sequence of }\mathbb{N}] \equiv 1 \cdot \$_1(N) \equiv 0 \cdot \$_1(I_1) \pmod{1 \cdot \$_1(I_2)}$. Define $\mathcal{O}[\text{finite 0-sequence of }\mathbb{N}] \equiv \text{for every}$ k_1 -element finite 0-sequence q of \mathbb{N} such that $q = \langle \$_1(I_1) \rangle \cap (\$_1 \restriction k)$ holds $1 \cdot \$_1(N) = \operatorname{eval}(P, @q)$. Define $\mathcal{M}[\text{finite 0-sequence of }\mathbb{N}] \equiv \text{for every } k_1$ element finite 0-sequence q of \mathbb{N} such that $q = \langle \$_1(I_1) \rangle \cap (\$_1 \restriction k)$ holds $(-1) \cdot \$_1(N) = \operatorname{eval}(P, @q)$. Define $\mathcal{Q}[\text{finite 0-sequence of }\mathbb{N}] \equiv \mathcal{O}[\$_1]$ or $\mathcal{M}[\$_1]$. $\{p, \text{ where } p \text{ is an } X\text{-element finite 0-sequence of }\mathbb{N} : \mathcal{O}[p]\}$ is a Diophantine subset of the X-stuples of \mathbb{N} . $\{p, \text{ where } p \text{ is an } X\text{-element finite 0-sequence}$ of $\mathbb{N} : \mathcal{M}[p]\}$ is a Diophantine subset of the X-stuples of \mathbb{N} . $\{p, \text{ where } p \text{ is an } X\text{-element finite 0-sequence}$ of $\mathbb{N} : \mathcal{M}[p]\}$ is a Diophantine subset of the X-stuples of \mathbb{N} . $\{p, \text{ where } p \text{ is an } X\text{-element finite 0-sequence}$ of $\mathbb{N} : \mathcal{M}[p]\}$ is a Diophantine subset of the X-stuples of \mathbb{N} . $\{p, \text{ where } p \text{ is an } X\text{-element finite 0-sequence}$ of $\mathbb{N} : \mathcal{M}[p]\}$ is a Diophantine subset of the X-stuples of \mathbb{N} . $\{p, \text{ where } p \text{ is an } X\text{-element finite 0-sequence of } \mathbb{N} : \mathcal{O}[p]$ or $\mathcal{M}[p]\}$ is a Diophantine subset of the X-stuples of \mathbb{N} . Set $P_1 = \{p, \text{ where } p \text{ is an } X\text{-element finite } 0\text{-sequence of } \mathbb{N} : \mathcal{P}[p]$ and $\mathcal{Q}[p]\}$. P_1 is a Diophantine subset of the X-stuples of \mathbb{N} .

Set $P_2 = \{p \mid n, \text{ where } p \text{ is an } X\text{-element finite 0-sequence of } \mathbb{N} : p \in P_1\}$. Define $S[\text{finite 0-sequence of } \mathbb{N}] \equiv \text{ for every } k_1\text{-element finite 0-sequence } q \text{ of } \mathbb{N} \text{ such that } q = \langle \$_1(i_1) \rangle^{\frown}(\$_1 \restriction k) \text{ holds eval}(P, @q) \equiv 0 \pmod{\$_1(i_2)}$. Set $S = \{p : S[p]\}$. $S \subseteq P_2$. $P_2 \subseteq S$. \Box

4. Bounded Quantifier Theorem and its Variant

Let us consider a \mathbb{Z} -valued polynomial p of 2 + n + k, \mathbb{R}_F , an n-element finite 0-sequence X of \mathbb{N} , and an element x of \mathbb{N} . Now we state the propositions:

(16) For every element z of N such that $z \leq x$ there exists a k-element finite 0-sequence y of N such that $\operatorname{eval}(p, @((\langle z, x \rangle \cap X) \cap y)) = 0$ if and only if there exists a k-element finite 0-sequence Y of N and there exist elements Z, e, K of N such that K > x and $K \ge (\sum \operatorname{coeff}(|p|)) \cdot$ $((x^2 + 1) \cdot (\prod(1 + X)) \cdot e^{\operatorname{degree}(p)})$ and for every natural number i such that $i \in k$ holds Y(i) > e and e > x and $1 + (Z+1) \cdot (K!) = \prod(1+K! \cdot (\operatorname{idseq}(x+1)))$ and $\operatorname{eval}(p, @((\langle Z, x \rangle \cap X) \cap Y)) \equiv 0 \pmod{1 + (Z+1) \cdot (K!)}$ and for every natural number i such that $i \in k$ holds $\prod(Y(i) + 1 + -\operatorname{idseq}(e)) \equiv$ $0 \pmod{1 + (Z+1) \cdot (K!)}.$

PROOF: If for every element z of N such that $z \leq x$ there exists a kelement finite 0-sequence y of N such that $eval(p, @((\langle z, x \rangle \cap X) \cap y)) = 0$, then there exists a k-element finite 0-sequence Y of N and there exist elements Z, e, K of N such that K > x and $K \ge (\sum coeff(|p|)) \cdot ((x^2 + 1) \cdot (\prod(1 + X)) \cdot e^{degree(p)})$ and for every natural number i such that $i \in k$ holds Y(i) > e and e > x and $1 + (Z+1) \cdot (K!) = \prod(1+K! \cdot (idseq(x+$ 1))) and $\operatorname{eval}(p, @((\langle Z, x \rangle \cap X) \cap Y)) \equiv 0 \pmod{1 + (Z + 1) \cdot (K!)}$ and for every natural number *i* such that $i \in k$ holds $\prod(Y(i) + 1 + -\operatorname{idseq}(e)) \equiv 0 \pmod{1 + (Z + 1) \cdot (K!)}$. Set $K_1 = K!$. Set $z_1 = 1 + (z + 1) \cdot K_1$. Consider p_3 being an element of \mathbb{N} such that $p_3 \mid z_1$ and $p_3 \leq z_1$ and p_3 is prime. Define $\mathcal{P}(\operatorname{object}) = Y(\$_1) \mod p_3$.

Consider Y_3 being a finite 0-sequence such that $\operatorname{len} Y_3 = k$ and for every natural number i such that $i \in k$ holds $Y_3(i) = \mathcal{P}(i)$. $\operatorname{rng} Y_3 \subseteq \mathbb{N}$. Reconsider $E_1 = \operatorname{eval}(p, {}^{@}((\langle Z, x \rangle \cap X) \cap Y))$ as an integer. $K < p_3$. For every i such that $i \in 2+k+n$ holds $p_3 \mid ((\langle Z, x \rangle \cap X) \cap Y)(i) - ((\langle z, x \rangle \cap X) \cap Y)(i) - ((\langle z, x \rangle \cap X) \cap Y_3)(i)$. $p_3 \mid E_1 - \operatorname{eval}(p, {}^{@}((\langle z, x \rangle \cap X) \cap Y_3)))$. Consider m being a natural number such that $|\operatorname{eval}(p, {}^{@}((\langle z, x \rangle \cap X) \cap Y_3))| = p_3 \cdot m$. For every object i such that $i \in \operatorname{dom}({}^{@}((\langle z, x \rangle \cap X) \cap Y_3))$ holds $|({}^{@}((\langle z, x \rangle \cap X) \cap Y_3))(i)| \leq (x^2 + 1) \cdot (\prod(1 + X)) \cdot e. |\operatorname{eval}(p, {}^{@}((\langle z, x \rangle \cap X) \cap Y_3))| \leq (\sum \operatorname{coeff}(|p|)) \cdot ((x^2 + 1) \cdot (\prod(1 + X)) \cdot e^{\operatorname{degree}(p)})$. \Box

(17) For every element z of \mathbb{N} such that $z \leq x$ there exists a k-element finite 0-sequence y of \mathbb{N} such that for every i such that $i \in k$ holds $y(i) \leq x$ and $\operatorname{eval}(p, {}^{@}((\langle z, x \rangle \cap X) \cap y)) = 0$ if and only if there exists a kelement finite 0-sequence Y of \mathbb{N} and there exist elements Z, K of \mathbb{N} such that K > x and $K \ge (\sum \operatorname{coeff}(|p|)) \cdot ((x^2 + 1) \cdot (\prod(1 + X))^{\operatorname{degree}(p)})$ and for every natural number i such that $i \in k$ holds Y(i) > x + 1 and $1 + (Z+1) \cdot (K!) = \prod(1+K! \cdot (\operatorname{idseq}(x+1)))$ and $\operatorname{eval}(p, {}^{@}((\langle Z, x \rangle \cap X) \cap Y)) \equiv$ $0 \pmod{1 + (Z+1) \cdot (K!)}$ and for every natural number i such that $i \in k$ holds $\prod(Y(i) + 1 + -\operatorname{idseq}(x+1)) \equiv 0 \pmod{1 + (Z+1) \cdot (K!)}$.

PROOF: Set $x_1 = x + 1$. If for every element z of \mathbb{N} such that $z \leq x$ there exists a k-element finite 0-sequence y of \mathbb{N} such that for every i such that $i \in k$ holds $y(i) \leq x$ and $\operatorname{eval}(p, @((\langle z, x \rangle \cap X) \cap y)) = 0$, then there exists a k-element finite 0-sequence Y of \mathbb{N} and there exist elements Z, K of \mathbb{N} such that K > x and $K \ge (\sum \operatorname{coeff}(|p|)) \cdot ((x^2 + 1) \cdot (\prod(1 + X))^{\operatorname{degree}(p)})$ and for every natural number i such that $i \in k$ holds $Y(i) > x_1$ and $1+(Z+1)\cdot(K!) = \prod(1+K!\cdot(\operatorname{idseq}(x+1)))$ and $\operatorname{eval}(p, @((\langle Z, x \rangle \cap X) \cap Y)) \equiv 0 \pmod{1+(Z+1)} \cdot (K!)$ and for every natural number i such that $i \in k$ holds $\prod(Y(i)+1+-\operatorname{idseq}(x_1)) \equiv 0 \pmod{1+(Z+1)} \cdot (K!)$. Set $K_1 = K!$. Set $z_1 = 1 + (z+1) \cdot K_1$.

Consider p_3 being an element of \mathbb{N} such that $p_3 \mid z_1$ and $p_3 \leqslant z_1$ and p_3 is prime. Define $\mathcal{P}(\text{object}) = Y(\$_1) \mod p_3$. Consider Y_3 being a finite 0-sequence such that len $Y_3 = k$ and for every natural number i such that $i \in k$ holds $Y_3(i) = \mathcal{P}(i)$. rng $Y_3 \subseteq \mathbb{N}$. Reconsider $E_1 = \text{eval}(p, @((\langle Z, x \rangle \cap X) \cap Y))$ as an integer. $K < p_3$. For every natural number i such that $i \in k$ holds $Y_3(i) \leqslant x$. For every i such that $i \in 2+k+n$ holds $p_3 \mid ((\langle Z, x \rangle \cap X) \cap Y)(i) - ((\langle z, x \rangle \cap X) \cap Y_3)(i)$. $p_3 \mid E_1 - \text{eval}(p, @((\langle z, x \rangle \cap X) \cap Y_3))$. Consider

m being a natural number such that $|\operatorname{eval}(p, @((\langle z, x \rangle \cap X) \cap Y_3))| = p_3 \cdot m$. For every object *i* such that $i \in \operatorname{dom}(@((\langle z, x \rangle \cap X) \cap Y_3))$ holds $|(@((\langle z, x \rangle \cap X) \cap Y_3))(i)| \leq (x^2 + 1) \cdot (\prod(1 + X))$. $|\operatorname{eval}(p, @((\langle z, x \rangle \cap X) \cap Y_3))| \leq (\sum \operatorname{coeff}(|p|)) \cdot ((x^2 + 1) \cdot (\prod(1 + X))^{\operatorname{degree}(p)})$. \Box

Let us consider a \mathbb{Z} -valued polynomial p of 2 + n + k, \mathbb{R}_{F} . Now we state the propositions:

(18) {X, where X is an n-element finite 0-sequence of \mathbb{N} : there exists an element x of \mathbb{N} such that for every element z of \mathbb{N} such that $z \leq x$ there exists a k-element finite 0-sequence y of \mathbb{N} such that $eval(p, @((\langle z, x \rangle \cap X) \cap y)) = 0$ } is a Diophantine subset of the n-xtuples of \mathbb{N} .

PROOF: Set $X_0 = \{X, \text{ where } X \text{ is an } n\text{-element finite 0-sequence of } \mathbb{N} :$ there exists an element x of \mathbb{N} such that for every element z of \mathbb{N} such that $z \leq x$ there exists a k-element finite 0-sequence y of \mathbb{N} such that $eval(p, @((\langle z, x \rangle \cap X) \cap y)) = 0\}$. Set $n_1 = 1 + n + k$. Set $s_4 = \sum \text{coeff}(|p|)$. Set D = degree(p). Reconsider $Z_0 = 0, i_0 = n_1, i_1 = n_1 + 1, i_2 = n_1 + 2, i_3 = n_1 + 3$ as an element of $n_1 + 4$. Define $\mathcal{P}_2[\text{finite 0-sequence of } \mathbb{N}] \equiv 1 \cdot \$_1(i_1) > 1 \cdot \$_1(Z_0) + 0$. Define $\mathcal{P}_3[\text{finite 0-sequence of } \mathbb{N}] \equiv \$_1(i_1) \geq s_4 \cdot ((\$_1(Z_0)^2 + 1) \cdot (\prod(1 + \$_1 \mid 1 \upharpoonright n)) \cdot (1 \cdot \$_1(i_0) + 0)^{0 \cdot \$_1(i_0) + D})$. $\{q, \text{ where } q \text{ is an } (n_1 + 4)\text{-element finite 0-sequence of } \mathbb{N} : \mathcal{P}_3[q]\}$ is a Diophantine subset of the $n_1 + 4$ -xtuples of \mathbb{N} .

Define $\mathcal{P}_4[\text{finite 0-sequence of }\mathbb{N}] \equiv \text{for every natural number } i \text{ such that } i \in k \text{ holds } \$_1(1+n+i) > \$_1(i_0) \text{ and } \prod(\$_1(1+n+i)+1+-\text{idseq}(\$_1(i_0))) \equiv 0 \pmod{\$_1(i_2)}. \{q, \text{ where } q \text{ is an } (n_1+4)\text{-element finite 0-sequence of }\mathbb{N} : \mathcal{P}_4[q]\} \text{ is a Diophantine subset of the } n_1 + 4\text{-xtuples of }\mathbb{N}. \text{ Define } \mathcal{P}_5[\text{finite 0-sequence of }\mathbb{N}] \equiv 1 \cdot \$_1(i_0) > 1 \cdot \$_1(Z_0) + 0. \text{ Define } \mathcal{P}_6[\text{finite 0-sequence of }\mathbb{N}] \equiv 1 + (\$_1(i_3)+1) \cdot (\$_1(i_1)!) = \$_1(i_2). \text{ Define } \mathcal{P}_7[\text{finite 0-sequence of }\mathbb{N}] \equiv \$_1(i_2) = \prod(1+\$_1(i_1)! \cdot (\text{idseq}(1+\$_1(Z_0)))). \text{ Reconsider } R = p \text{ as a } \mathbb{Z}\text{-valued polynomial of } 1+n_1, \mathbb{R}_F. \text{ Define } \mathcal{P}_8[\text{finite 0-sequence of }\mathbb{N}] \equiv \text{ for every } (1+n_1)\text{-element finite 0-sequence } Y \text{ of } \mathbb{N} \text{ such that } Y = \langle\$_1(i_3)\rangle \cap (\$_1 \upharpoonright n_1) \text{ holds eval}(R, @Y) \equiv 0 \pmod{\$_1(i_2)}. \{q, \text{ where } q \text{ is an } (n_1+4)\text{-element finite 0-sequence of } \mathbb{N} : \mathcal{P}_8[q]\} \text{ is a Diophantine subset of the } n_1 + 4\text{-xtuples of } \mathbb{N}.$

Define $\mathcal{P}_{123}[$ finite 0-sequence of $\mathbb{N}] \equiv \mathcal{P}_2[\$_1]$ and $\mathcal{P}_3[\$_1]$. $\{q, \text{ where } q \text{ is an } (n_1 + 4)\text{-element finite 0-sequence of } \mathbb{N} : \mathcal{P}_{123}[q]\}$ is a Diophantine subset of the $n_1 + 4$ -xtuples of \mathbb{N} . Define $\mathcal{P}_{1234}[$ finite 0-sequence of $\mathbb{N}] \equiv \mathcal{P}_{123}[\$_1]$ and $\mathcal{P}_4[\$_1]$. $\{q, \text{ where } q \text{ is an } (n_1 + 4)\text{-element finite 0-sequence of } \mathbb{N} : \mathcal{P}_{1234}[q]\}$ is a Diophantine subset of the $n_1 + 4$ -xtuples of \mathbb{N} . Define $\mathcal{P}_{12345}[$ finite 0-sequence of $\mathbb{N}] \equiv \mathcal{P}_{12345}[\$_1]$ and $\mathcal{P}_5[\$_1]$. $\{q, \text{ where } q \text{ is an } (n_1 + 4)\text{-element finite 0-sequence of } \mathbb{N}] \equiv \mathcal{P}_{12345}[\$_1]$ and $\mathcal{P}_5[\$_1]$. $\{q, \text{ where } q \text{ is an } (n_1 + 4)\text{-element finite 0-sequence of } \mathbb{N}] \equiv \mathcal{P}_{12345}[\$_1]$ and $\mathcal{P}_5[\$_1]$. $\{q, \text{ where } q \text{ is an } (n_1 + 4)\text{-element finite 0-sequence of } \mathbb{N}] \equiv \mathcal{P}_{12345}[\$_1]$ and $\mathcal{P}_5[\$_1]$. $\{q, \text{ where } q \text{ is an } (n_1 + 4)\text{-element finite 0-sequence of } \mathbb{N}] \equiv \mathcal{P}_{12345}[\$_1]$ and $\mathcal{P}_5[\$_1]$. $\{q, \text{ where } q \text{ is an } (n_1 + 4)\text{-element finite 0-sequence of } \mathbb{N}] \equiv \mathcal{P}_{12345}[\$_1]$ and $\mathcal{P}_5[\$_1]$. $\{q, \text{ where } q \text{ is an } (n_1 + 4)\text{-element finite 0-sequence of } \mathbb{N}] \equiv \mathcal{P}_{12345}[\$_1]$ and $\mathcal{P}_5[\$_1]$. $\{q, \text{ where } q \text{ is an } (n_1 + 4)\text{-element finite 0-sequence of } \mathbb{N}] \equiv \mathcal{P}_{12345}[\$_1]$ and $\mathcal{P}_5[\$_1]$. $\{q, \text{ where } q \text{ is an } (n_1 + 4)\text{-element finite 0-sequence of } \mathbb{N}] \equiv \mathcal{P}_{12345}[\$_1]$ and $\mathcal{P}_5[\$_1]$. $\{q, \text{ where } q \text{ is an } (n_1 + 4)\text{-element finite 0-sequence of } \mathbb{N}] \equiv \mathcal{P}_{12345}[\$_1]$ and $\mathcal{P}_5[\$_1]$. $\{q, \text{ where } q \text{ is an } (n_1 + 4)\text{-element finite 0-sequence of } \mathbb{N}] \equiv \mathcal{P}_{12345}[\$_1]$ and $\mathcal{P}_5[\$_1]$.

the n_1 + 4-xtuples of \mathbb{N} . Define $\mathcal{P}_{123456}[$ finite 0-sequence of $\mathbb{N}] \equiv \mathcal{P}_{12345}[\$_1]$ and $\mathcal{P}_6[\$_1]$. {q, where q is an $(n_1 + 4)$ -element finite 0-sequence of \mathbb{N} : $\mathcal{P}_{123456}[q]$ } is a Diophantine subset of the n_1 + 4-xtuples of \mathbb{N} . Define $\mathcal{P}_{1234567}[$ finite 0-sequence of $\mathbb{N}] \equiv \mathcal{P}_{123456}[\$_1]$ and $\mathcal{P}_7[\$_1]$. {q, where q is an $(n_1 + 4)$ -element finite 0-sequence of \mathbb{N} : $\mathcal{P}_{1234567}[q]$ } is a Diophantine subset of the n_1 + 4-xtuples of \mathbb{N} .

Define $\mathcal{P}_{12345678}$ [finite 0-sequence of $\mathbb{N} \equiv \mathcal{P}_{1234567}[\$_1]$ and $\mathcal{P}_8[\$_1]$. Set $X_3 = \{q, \text{ where } q \text{ is an } (n_1+4)\text{-element finite 0-sequence of } \mathbb{N} : \mathcal{P}_{12345678}[q]\}$. X_3 is a Diophantine subset of the $n_1 + 4\text{-xtuples of } \mathbb{N}$. Set $X_2 = \{X \upharpoonright (n + 1), \text{ where } X \text{ is an } (n_1 + 4)\text{-element finite 0-sequence of } \mathbb{N} : X \in X_3\}$. Define \mathcal{S} [finite 0-sequence of $\mathbb{N}] \equiv \text{ for every element } z \text{ of } \mathbb{N} \text{ such that } z \leqslant \$_1(0) \text{ there exists a } k\text{-element finite 0-sequence } y \text{ of } \mathbb{N} \text{ such that } for every n\text{-element finite 0-sequence } X_1 \text{ of } \mathbb{N} \text{ such that } X_1 = \$_1 \downarrow_1 \text{ holds } eval(p, @((\langle z, \$_1(0) \rangle \cap X_1) \cap y)) = 0$. Set $X_1 = \{X, \text{ where } X \text{ is an } (n + 1)\text{-element finite 0-sequence } of <math>\mathbb{N} : \mathcal{S}[X]\}$. For every object $s, s \in X_1$ iff $s \in X_2$. Set $Y_1 = \{X_{\downarrow 1}, \text{ where } X \text{ is an } (n + 1)\text{-element finite 0-sequence } of \mathbb{N} : X \in X_1\}$. For every object $s, s \in Y_1$ iff $s \in X_0$. \Box

(19) {X, where X is an n-element finite 0-sequence of \mathbb{N} : there exists an element x of \mathbb{N} such that for every element z of \mathbb{N} such that $z \leq x$ there exists a k-element finite 0-sequence y of \mathbb{N} such that for every natural number i such that $i \in k$ holds $y(i) \leq x$ and $\operatorname{eval}(p, @((\langle z, x \rangle \cap X) \cap y)) = 0$ } is a Diophantine subset of the n-xtuples of \mathbb{N} .

PROOF: Set $X_0 = \{X, \text{ where } X \text{ is an } n\text{-element finite 0-sequence of } \mathbb{N} :$ there exists an element x of \mathbb{N} such that for every element z of \mathbb{N} such that $z \leq x$ there exists a k-element finite 0-sequence y of \mathbb{N} such that for every natural number i such that $i \in k$ holds $y(i) \leq x$ and eval(p, x)

$$\begin{split} & @((\langle z, x \rangle \cap X) \cap y)) = 0 \rbrace. \text{ Set } n_1 = 1 + n + k. \text{ Set } s_4 = \sum \mathsf{coeff}(|p|). \text{ Set } \\ & D = \operatorname{degree}(p). \text{ Reconsider } Z_0 = 0, \ i_0 = n_1, \ i_1 = n_1 + 1, \ i_2 = n_1 + 2, \\ & i_3 = n_1 + 3 \text{ as an element of } n_1 + 4. \text{ Define } \mathcal{P}_2[\text{finite 0-sequence of } \mathbb{N}] \equiv \\ & 1 \cdot \$_1(i_1) > 1 \cdot \$_1(Z_0) + 0. \text{ Define } \mathcal{P}_3[\text{finite 0-sequence of } \mathbb{N}] \equiv \$_1(i_1) \geqslant \\ & s_4 \cdot ((\$_1(Z_0)^2 + 1) \cdot (\prod(1 + \$_1 \iota_1 \restriction n)) \cdot (0 \cdot \$_1(i_0) + 1)^{0 \cdot \$_1(i_0) + D}). \ \{q, \text{ where } q \text{ is an } (n_1 + 4)\text{-element finite 0-sequence of } \mathbb{N} : \mathcal{P}_3[q] \rbrace \text{ is a Diophantine subset of the } n_1 + 4\text{-xtuples of } \mathbb{N}. \end{split}$$

Define $\mathcal{P}_4[\text{finite 0-sequence of }\mathbb{N}] \equiv \text{for every natural number } i \text{ such that } i \in k \text{ holds } \$_1(1+n+i) > \$_1(i_0) \text{ and } \prod(\$_1(1+n+i)+1+-\text{idseq}(\$_1(i_0))) \equiv 0 \pmod{\$_1(i_2)}. \{q, \text{ where } q \text{ is an } (n_1+4)\text{-element finite 0-sequence of }\mathbb{N} : \mathcal{P}_4[q]\} \text{ is a Diophantine subset of the } n_1 + 4\text{-xtuples of }\mathbb{N}. \text{ Define } \mathcal{P}_5[\text{finite 0-sequence of }\mathbb{N}] \equiv \$_1(i_0) = 1 \cdot \$_1(Z_0) + 1. \text{ Define } \mathcal{P}_6[\text{finite 0-sequence of }\mathbb{N}] \equiv 1 + (\$_1(i_3)+1) \cdot (\$_1(i_1)!) = \$_1(i_2). \text{ Define } \mathcal{P}_7[\text{finite 0-sequence of }\mathbb{N}] \equiv \$_1(i_2) = \prod(1+\$_1(i_1)! \cdot (\text{idseq}(1+\$_1(Z_0)))). \text{ Reconsider } R = p \text{ as a } \mathbb{Z}\text{-valued}$

polynomial of $1 + n_1, \mathbb{R}_F$. Define $\mathcal{P}_8[$ finite 0-sequence of $\mathbb{N}] \equiv$ for every $(1+n_1)$ -element finite 0-sequence Y of \mathbb{N} such that $Y = \langle \$_1(i_3) \rangle \cap (\$_1 \upharpoonright n_1)$ holds eval $(R, @Y) \equiv 0 \pmod{\$_1(i_2)}$. $\{q, \text{ where } q \text{ is an } (n_1+4)\text{-element finite } 0\text{-sequence of } \mathbb{N} : \mathcal{P}_8[q] \}$ is a Diophantine subset of the $n_1 + 4$ -xtuples of \mathbb{N} .

Define $\mathcal{P}_{123}[$ finite 0-sequence of $\mathbb{N}] \equiv \mathcal{P}_2[\$_1]$ and $\mathcal{P}_3[\$_1]$. $\{q, \text{ where } q\}$ is an $(n_1 + 4)$ -element finite 0-sequence of $\mathbb{N} : \mathcal{P}_{123}[q]$ is a Diophantine subset of the $n_1 + 4$ -stuples of \mathbb{N} . Define $\mathcal{P}_{1234}[$ finite 0-sequence of $\mathbb{N}] \equiv$ $\mathcal{P}_{123}[\$_1]$ and $\mathcal{P}_4[\$_1]$. {q, where q is an $(n_1 + 4)$ -element finite 0-sequence of $\mathbb{N} : \mathcal{P}_{1234}[q]$ is a Diophantine subset of the $n_1 + 4$ -xtuples of \mathbb{N} . Define $\mathcal{P}_{12345}[\text{finite 0-sequence of }\mathbb{N}] \equiv \mathcal{P}_{1234}[\$_1] \text{ and } \mathcal{P}_5[\$_1]. \{q, \text{ where } q \text{ is an } (n_1 + 1) \}$ 4)-element finite 0-sequence of \mathbb{N} : $\mathcal{P}_{12345}[q]$ is a Diophantine subset of the $n_1 + 4$ -stuples of \mathbb{N} . Define \mathcal{P}_{123456} [finite 0-sequence of \mathbb{N}] $\equiv \mathcal{P}_{12345}$ [$\$_1$] and $\mathcal{P}_6[\$_1]$. $\{q, \text{ where } q \text{ is an } (n_1 + 4)\text{-element finite 0-sequence of } \mathbb{N}$: $\mathcal{P}_{123456}[q]$ is a Diophantine subset of the n_1 + 4-xtuples of N. Define $\mathcal{P}_{1234567}[\text{finite 0-sequence of }\mathbb{N}] \equiv \mathcal{P}_{123456}[\$_1] \text{ and } \mathcal{P}_7[\$_1]. \{q, \text{ where } q \text{ is }$ an $(n_1 + 4)$ -element finite 0-sequence of $\mathbb{N} : \mathcal{P}_{1234567}[q]$ is a Diophantine subset of the n_1 + 4-xtuples of \mathbb{N} . Define $\mathcal{P}_{12345678}$ [finite 0-sequence of \mathbb{N}] \equiv $\mathcal{P}_{1234567}[\$_1]$ and $\mathcal{P}_8[\$_1]$. Set $X_3 = \{q, \text{ where } q \text{ is an } (n_1+4)\text{-element finite}\}$ 0-sequence of \mathbb{N} : $\mathcal{P}_{12345678}[q]$. X_3 is a Diophantine subset of the $n_1 + 4$ xtuples of N. Set $X_2 = \{X \mid (n+1), \text{ where } X \text{ is an } (n_1+4)\text{-element finite} \}$ 0-sequence of $\mathbb{N} : X \in X_3$.

Define S[finite 0-sequence of $\mathbb{N}] \equiv$ for every element z of \mathbb{N} such that $z \leq \$_1(0)$ there exists a k-element finite 0-sequence y of \mathbb{N} such that for every n-element finite 0-sequence X_1 of \mathbb{N} such that $X_1 = \$_{1 \mid 1}$ holds for every i such that $i \in k$ holds $y(i) \leq \$_1(0)$ and $\operatorname{eval}(p, @((\langle z, \$_1(0) \rangle \cap X_1) \cap y)) = 0$. Set $X_1 = \{X, \text{ where } X \text{ is an } (n+1)\text{-element finite 0-sequence of } \mathbb{N} : S[X]\}$. For every object $s, s \in X_1$ iff $s \in X_2$. Set $Y_1 = \{X_{\mid 1}, \text{ where } X \text{ is an } (n+1)\text{-element finite 0-sequence of } \mathbb{N} : X \in X_1\}$. For every object $s, s \in Y_1$ iff $s \in X_0$. \Box

Let n be a natural number and A be a subset of the n-xtuples of \mathbb{N} . We say that A is recursively enumerable if and only if

(Def. 4) there exists a natural number m and there exists a \mathbb{Z} -valued polynomial P of 2 + n + m, \mathbb{R}_{F} such that for every n-element finite 0-sequence X of \mathbb{N} , $X \in A$ iff there exists an element x of \mathbb{N} such that for every element z of \mathbb{N} such that $z \leq x$ there exists an m-element finite 0-sequence Y of \mathbb{N} such that for every object i such that $i \in \operatorname{dom} Y$ holds $Y(i) \leq x$ and $\operatorname{eval}(P, {}^{@}((\langle z, x \rangle \cap X) \cap Y)) = 0.$

Now we state the proposition:

(20) Let us consider a natural number n, and a subset A of the n-xtuples of \mathbb{N} . If A is Diophantine, then A is recursively enumerable.

PROOF: Consider *m* being a natural number, *P* being a \mathbb{Z} -valued polynomial of n + m, \mathbb{R}_{F} such that for every object $s, s \in A$ iff there exists an *n*-element finite 0-sequence *x* of N and there exists an *m*-element finite 0-sequence *y* of N such that s = x and $\operatorname{eval}(P, {}^{@}(x^{\frown}y)) = 0$. Set $n_4 = n+m$. Reconsider $\mathrm{P}_0 = P$ as a \mathbb{Z} -valued polynomial of $0 + n_4$, \mathbb{R}_{F} . Consider *q* being a polynomial of $0 + 2 + n_4$, \mathbb{R}_{F} such that $\operatorname{rng} q \subseteq \operatorname{rng} \mathrm{P}_0 \cup \{0_{\mathbb{R}_{\mathrm{F}}}\}$ and for every function x_1 from $0 + n_4$ into \mathbb{R}_{F} and for every function X_1 from $0 + 2 + n_4$ into \mathbb{R}_{F} such that $x_1 | 0 = X_1 | 0$ and $({}^{@}x_1)_{|0} = ({}^{@}X_1)_{|0+2}$ holds $\operatorname{eval}(\mathrm{P}_0, x_1) = \operatorname{eval}(q, X_1)$.

Reconsider Q = q as a \mathbb{Z} -valued polynomial of 2 + n + m, \mathbb{R}_F . If $X \in A$, then there exists an element x of \mathbb{N} such that for every element z of \mathbb{N} such that $z \leq x$ there exists an m-element finite 0-sequence Y of \mathbb{N} such that for every object i such that $i \in \text{dom } Y$ holds $Y(i) \leq x$ and $\text{eval}(Q, @((\langle z, x \rangle \cap X) \cap Y)) = 0$. Consider y being an m-element finite 0-sequence of \mathbb{N} such that for every object i such that $i \in \text{dom } y$ holds $y(i) \leq a$ and $\text{eval}(Q, @((\langle a, a \rangle \cap X) \cap y)) = 0$. \Box

5. MRDP THEOREM

Now we state the proposition:

(21) YURI MATIYASEVICH, JULIA ROBINSON, MARTIN DAVIS, HILARY PUT-NAM THEOREM:

Let us consider a natural number n, and a subset A of the n-xtuples of \mathbb{N} . If A is recursively enumerable, then A is Diophantine. The theorem is a consequence of (19).

References

- Marcin Acewicz and Karol Pak. Basic Diophantine relations. Formalized Mathematics, 26(2):175–181, 2018. doi:10.2478/forma-2018-0015.
- Marcin Acewicz and Karol Pak. Pell's equation. Formalized Mathematics, 25(3):197–204, 2017. doi:10.1515/forma-2017-0019.
- [3] Zofia Adamowicz and Paweł Zbierski. Logic of Mathematics: A Modern Course of Classical Logic. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley-Interscience, 1997.
- [4] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.

- [5] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [6] Martin Davis. Hilbert's tenth problem is unsolvable. The American Mathematical Monthly, Mathematical Association of America, 80(3):233-269, 1973. doi:10.2307/2318447.
- [7] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.
- [8] Karol Pak. The Matiyasevich theorem. Preliminaries. Formalized Mathematics, 25(4): 315–322, 2017. doi:10.1515/forma-2017-0029.
- [9] Karol Pak. Diophantine sets. Part II. Formalized Mathematics, 27(2):197–208, 2019. doi:10.2478/forma-2019-0019.
- [10] Craig Alan Smorynski. Logical Number Theory I, An Introduction. Universitext. Springer-Verlag Berlin Heidelberg, 1991. ISBN 978-3-642-75462-3.

Accepted May 27, 2019