

Fubini's Theorem

Noboru Endou National Institute of Technology, Gifu College 2236-2 Kamimakuwa, Motosu, Gifu, Japan

Summary. Fubini theorem is an essential tool for the analysis of highdimensional space [8], [2], [3], a theorem about the multiple integral and iterated integral. The author has been working on formalizing Fubini's theorem over the past few years [4], [6] in the Mizar system [7], [1]. As a result, Fubini's theorem (30) was proved in complete form by this article.

MSC: 28A35 68T99 03B35

Keywords: Fubini's theorem; product measure; multiple integral; iterated integral

MML identifier: MESFUN13, version: 8.1.09 5.54.1344

1. Preliminaries

From now on X denotes a set.

Now we state the proposition:

(1) Let us consider a subset A of X, and an X-defined binary relation f. Then $f \upharpoonright A^{c} = f \upharpoonright (\operatorname{dom} f \setminus A)$.

Let us consider a partial function f from X to $\overline{\mathbb{R}}$. Now we state the propositions:

- (2) GTE-dom $(f, +\infty) = \text{EQ-dom}(f, +\infty).$
- (3) LEQ-dom $(f, -\infty) =$ EQ-dom $(f, -\infty)$.
- (4) Let us consider a partial function f from X to $\overline{\mathbb{R}}$, and an extended real e. Then GTE-dom(f, e) misses LE-dom(f, e).
- (5) Let us consider a partial function f from X to \mathbb{R} . Then dom $f = (\text{EQ-dom} (f, -\infty) \cup \text{GT-dom}(f, -\infty) \cap \text{LE-dom}(f, +\infty)) \cup \text{EQ-dom}(f, +\infty)$.

In the sequel X, X_1, X_2 denote non empty sets.

- (6) Let us consider a partial function f from X to \mathbb{R} , and an element x of X. Then
 - (i) $(\max_{+}(f))(x) \leq |f|(x)$, and
 - (ii) $(\max_{-}(f))(x) \le |f|(x).$
- (7) Let us consider a partial function f from $X_1 \times X_2$ to $\overline{\mathbb{R}}$, an element x of X_1 , and an element y of X_2 . Then
 - (i) $\operatorname{ProjPMap1}(|f|, x) = |\operatorname{ProjPMap1}(f, x)|$, and
 - (ii) $\operatorname{ProjPMap2}(|f|, y) = |\operatorname{ProjPMap2}(f, y)|.$

2. Markov's Inequality

From now on S denotes a σ -field of subsets of X, S_1 denotes a σ -field of subsets of X_1 , S_2 denotes a σ -field of subsets of X_2 , M denotes a σ -measure on S, M_1 denotes a σ -measure on S_1 , and M_2 denotes a σ -measure on S_2 .

Let X be a non empty set, S be a σ -field of subsets of X, and E be an element of S. One can verify that there exists a partial function from X to $\overline{\mathbb{R}}$ which is E-measurable.

Now we state the proposition:

(8) Let us consider an element E of S, and an E-measurable partial function f from X to $\overline{\mathbb{R}}$. Suppose dom f = E.

Then EQ-dom $(f, +\infty)$, EQ-dom $(f, -\infty) \in S$.

Let us consider an element E of $\sigma(\text{MeasRect}(S_1, S_2))$ and an E-measurable partial function f from $X_1 \times X_2$ to $\overline{\mathbb{R}}$. Now we state the propositions:

- (9) Suppose M_1 is σ -finite and M_2 is σ -finite and dom f = E. Then
 - (i) $\int \text{Integral2}(M_2, |f|) dM_1 = \int |f| d \operatorname{ProdMeas}(M_1, M_2)$, and
 - (ii) $\int \text{Integral1}(M_1, |f|) dM_2 = \int |f| d \operatorname{ProdMeas}(M_1, M_2).$
- (10) Suppose M_1 is σ -finite and M_2 is σ -finite and E = dom f. Then f is integrable on $\text{ProdMeas}(M_1, M_2)$ if and only if $\int \text{Integral1}(M_1, |f|) dM_2 < +\infty$.
- (11) Suppose M_1 is σ -finite and M_2 is σ -finite and E = dom f. Then f is integrable on $\text{ProdMeas}(M_1, M_2)$ if and only if $\int \text{Integral2}(M_2, |f|) dM_1 < +\infty$.
- (12) Let us consider an element E of $\sigma(\text{MeasRect}(S_1, S_2))$, an element U of S_1 , and an E-measurable partial function f from $X_1 \times X_2$ to $\overline{\mathbb{R}}$. Suppose M_2 is σ -finite and E = dom f. Then $\text{Integral2}(M_2, |f|)$ is U-measurable.

(13) Let us consider an element E of $\sigma(\text{MeasRect}(S_1, S_2))$, an element V of S_2 , and an E-measurable partial function f from $X_1 \times X_2$ to $\overline{\mathbb{R}}$. Suppose M_1 is σ -finite and E = dom f. Then $\text{Integral1}(M_1, |f|)$ is V-measurable.

Let us consider a partial function f from $X_1 \times X_2$ to $\overline{\mathbb{R}}$. Now we state the propositions:

(14) Suppose M_2 is σ -finite and f is integrable on $\operatorname{ProdMeas}(M_1, M_2)$. Then

- (i) $\int \max_{+} (\operatorname{Integral2}(M_2, |f|)) dM_1 = \int \operatorname{Integral2}(M_2, |f|) dM_1$, and
- (ii) $\int \max_{-} (\operatorname{Integral2}(M_2, |f|)) dM_1 = 0.$

The theorem is a consequence of (12).

- (15) Suppose M_1 is σ -finite and f is integrable on $\operatorname{ProdMeas}(M_1, M_2)$. Then
 - (i) $\int \max_{+}(\operatorname{Integral1}(M_1, |f|)) dM_2 = \int \operatorname{Integral1}(M_1, |f|) dM_2$, and
 - (ii) $\int \max_{-} (\operatorname{Integral1}(M_1, |f|)) \, \mathrm{d}M_2 = 0.$

The theorem is a consequence of (13).

(16) MARKOV'S INEQUALITY:

Let us consider an element E of S, an E-measurable partial function ffrom X to $\overline{\mathbb{R}}$, and an extended real e. Suppose dom f = E and f is nonnegative and $e \ge 0$. Then $e \cdot M(\text{GTE-dom}(f, e)) \le \int f \, dM$. PROOF: GTE-dom $(f, +\infty) = \text{EQ-dom}(f, +\infty)$. Reconsider $E_3 = \text{GTE-dom}(f, e)$ as an element of S. For every element x of X such that $x \in \text{dom}(\chi_{e,E_3,X} \upharpoonright E_3)$ holds $(\chi_{e,E_3,X} \upharpoonright E_3)(x) \le (f \upharpoonright E_3)(x)$. \Box

3. Fubini's Theorem

Now we state the propositions:

- (17) Let us consider partial functions f, g from X to $\overline{\mathbb{R}}$. Suppose f is integrable on M and g is integrable on M. Then
 - (i) $\int f + g \, \mathrm{d}M = \int f \upharpoonright (\operatorname{dom} f \cap \operatorname{dom} g) \, \mathrm{d}M + \int g \upharpoonright (\operatorname{dom} f \cap \operatorname{dom} g) \, \mathrm{d}M$, and
 - (ii) $\int f g \, \mathrm{d}M = \int f \restriction (\operatorname{dom} f \cap \operatorname{dom} g) \, \mathrm{d}M \int g \restriction (\operatorname{dom} f \cap \operatorname{dom} g) \, \mathrm{d}M.$
- (18) Let us consider a partial function f from X to \mathbb{R} . Then f is integrable on M if and only if $\max_+(f)$ is integrable on M and $\max_-(f)$ is integrable on M.
- (19) Let us consider elements A, B of S, and a partial function f from X to $\overline{\mathbb{R}}$. Suppose $B \subseteq A$ and $f \upharpoonright A$ is B-measurable. Then f is B-measurable.

Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. We say that f is integrable a.e. w.r.t. M if and only if (Def. 1) there exists an element A of S such that M(A) = 0 and $A \subseteq \text{dom } f$ and $f \upharpoonright A^c$ is integrable on M.

Let us consider a partial function f from X to $\overline{\mathbb{R}}$. Now we state the propositions:

- (20) If f is integrable a.e. w.r.t. M, then dom $f \in S$.
- (21) If f is integrable on M, then f is integrable a.e. w.r.t. M. The theorem is a consequence of (1).

Let X be a non empty set, S be a σ -field of subsets of X, M be a σ -measure on S, and f be a partial function from X to $\overline{\mathbb{R}}$. We say that f is finite M-a.e. if and only if

(Def. 2) there exists an element A of S such that M(A) = 0 and $A \subseteq \text{dom } f$ and $f \upharpoonright A^c$ is a partial function from X to \mathbb{R} .

Now we state the propositions:

- (22) Let us consider an element E of S, and an E-measurable partial function f from X to \mathbb{R} . Suppose dom f = E. Then f is finite M-a.e. if and only if $M(\operatorname{EQ-dom}(f, +\infty) \cup \operatorname{EQ-dom}(f, -\infty)) = 0$. The theorem is a consequence of (8).
- (23) Let us consider a partial function f from X to $\overline{\mathbb{R}}$. Suppose f is integrable on M. Then
 - (i) $M(\text{EQ-dom}(f, +\infty)) = 0$, and
 - (ii) $M(\text{EQ-dom}(f, -\infty)) = 0$, and
 - (iii) f is finite *M*-a.e., and
 - (iv) for every real number r such that r > 0 holds $M(\text{GTE-dom}(|f|, r)) < +\infty$.

The theorem is a consequence of (16).

- (24) Let us consider a partial function f from $X_1 \times X_2$ to \mathbb{R} . Suppose M_1 is σ -finite and M_2 is σ -finite and f is integrable on $\operatorname{ProdMeas}(M_1, M_2)$. Then
 - (i) Integral1 $(M_1, \max_+(f))$ is integrable on M_2 , and
 - (ii) Integral2 $(M_2, \max_+(f))$ is integrable on M_1 , and
 - (iii) Integral1 $(M_1, \max_{-}(f))$ is integrable on M_2 , and
 - (iv) Integral2 $(M_2, \max_{-}(f))$ is integrable on M_1 , and
 - (v) Integral1 $(M_1, |f|)$ is integrable on M_2 , and
 - (vi) Integral2 $(M_2, |f|)$ is integrable on M_1 .

- (25) Let us consider an element E of S, and an E-measurable partial function f from X to \mathbb{R} . Suppose dom $f \subseteq E$ and f is integrable a.e. w.r.t. M. Then f is integrable on M. The theorem is a consequence of (20) and (1).
- (26) Let us consider an element A of S, and a partial function f from X to $\overline{\mathbb{R}}$. Suppose M(A) = 0 and $A \subseteq \text{dom } f$ and $f \upharpoonright A^c$ is integrable on M. Then there exists a partial function g from X to $\overline{\mathbb{R}}$ such that
 - (i) $\operatorname{dom} g = \operatorname{dom} f$, and
 - (ii) $f \upharpoonright A^{c} = g \upharpoonright A^{c}$, and
 - (iii) g is integrable on M, and
 - (iv) $\int f \upharpoonright A^{c} dM = \int g dM$.

PROOF: Consider *B* being an element of *S* such that $B = \operatorname{dom}(f \upharpoonright A^{c})$ and $f \upharpoonright A^{c}$ is *B*-measurable. $f \upharpoonright A^{c} = f \upharpoonright (\operatorname{dom} f \setminus A)$. Define $\mathcal{C}[\operatorname{object}] \equiv \$_{1} \in A$. Define $\mathcal{F}(\operatorname{object}) = +\infty$. Define $\mathcal{G}(\operatorname{object}) = f(\$_{1})$. Consider *g* being a function such that dom $g = \operatorname{dom} f$ and for every object *x* such that $x \in \operatorname{dom} f$ holds if $\mathcal{C}[x]$, then $g(x) = \mathcal{F}(x)$ and if not $\mathcal{C}[x]$, then $g(x) = \mathcal{G}(x)$. For every real number r, $(A \cup B) \cap \operatorname{LE-dom}(g, r) \in S$. $\int f \upharpoonright A^{c} dM = \int g \upharpoonright (\operatorname{dom} g \setminus A) dM$. \Box

- (27) Let us consider a partial function f from $X_1 \times X_2$ to \mathbb{R} . Suppose M_1 is σ -finite and M_2 is σ -finite and f is integrable on ProdMeas (M_1, M_2) . Then
 - (i) $\int f \, \mathrm{d} \operatorname{ProdMeas}(M_1, M_2) = \int \operatorname{Integral1}(M_1, \max_+(f)) \, \mathrm{d}M_2 \int \operatorname{Integral1}(M_1, \max_-(f)) \, \mathrm{d}M_2$, and
 - (ii) $\int f \, \mathrm{d} \operatorname{ProdMeas}(M_1, M_2) = \int \operatorname{Integral2}(M_2, \max_+(f)) \, \mathrm{d}M_1 \int \operatorname{Integral2}(M_2, \max_-(f)) \, \mathrm{d}M_1.$
- (28) Let us consider an element E of $\sigma(\text{MeasRect}(S_1, S_2))$, and an element y of X_2 . Then
 - (i) if M_1 (MeasurableYsection(E, y)) $\neq 0$, then (Integral1 $(M_1, \overline{\chi}_{E, X_1 \times X_2})$) $(y) = +\infty$, and
 - (ii) if M_1 (MeasurableYsection(E, y)) = 0, then (Integral1 $(M_1, \overline{\chi}_{E, X_1 \times X_2})$)(y) = 0.
- (29) Let us consider an element E of σ (MeasRect (S_1, S_2)), and an element x of X_1 . Then
 - (i) if M_2 (MeasurableXsection(E, x)) $\neq 0$, then (Integral2 $(M_2, \overline{\chi}_{E,X_1 \times X_2})$) $(x) = +\infty$, and
 - (ii) if M_2 (MeasurableXsection(E, x)) = 0, then (Integral2 $(M_2, \overline{\chi}_{E,X_1 \times X_2})$)(x) = 0.

(30) FUBINI'S THEOREM:

Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , a partial function f from $X_1 \times X_2$ to $\overline{\mathbb{R}}$, and an element S_3 of S_1 . Suppose M_1 is σ -finite and M_2 is σ -finite and f is integrable on ProdMeas (M_1, M_2) and $X_1 = S_3$. Then there exists an element U of S_1 such that

- (i) $M_1(U) = 0$, and
- (ii) for every element x of X_1 such that $x \in U^c$ holds $\operatorname{ProjPMap1}(f, x)$ is integrable on M_2 , and
- (iii) Integral2 $(M_2, |f|)$ U^c is a partial function from X_1 to \mathbb{R} , and
- (iv) Integral2 (M_2, f) is $(S_3 \setminus U)$ -measurable, and
- (v) Integral2 (M_2, f) U^c is integrable on M_1 , and
- (vi) Integral2 (M_2, f) $U^c \in \text{the } L^1 \text{ functions of } M_1, \text{ and }$
- (vii) there exists a function g from X_1 into $\overline{\mathbb{R}}$ such that g is integrable on M_1 and $g \upharpoonright U^c = \text{Integral2}(M_2, f) \upharpoonright U^c$ and $\int f \, d \operatorname{ProdMeas}(M_1, M_2) = \int g \, dM_1$.

PROOF: Consider A being an element of $\sigma(\text{MeasRect}(S_1, S_2))$ such that A = dom f and f is A-measurable. Integral2 $(M_2, |f|)$ is integrable on M_1 and Integral2 $(M_2, \max_+(f))$ is integrable on M_1 and Integral2 $(M_2, \max_+(f))$ is integrable on M_1 and Integral2 $(M_2, \max_-(f))$ is integrable on M_1 . Integral2 $(M_2, |f|)$ is finite M_1 -a.e.. Consider U being an element of S_1 such that $M_1(U) = 0$ and Integral2 $(M_2, |f|) |U^c$ is a partial function from X_1 to \mathbb{R} . For every element x of X_1 such that $x \in U^c$ holds ProjPMap1(f, x) is integrable on M_2 . Consider g_1 being a partial function from X_1 to \mathbb{R} such that dom $g_1 = \text{dom}(\text{Integral2}(M_2, \max_+(f)))$ and $g_1 | U^c = \text{Integral2}(M_2, \max_+(f)) | U^c$ and g_1 is integrable on M_1 and $\int g_1 \, \mathrm{d} M_1 = \int \text{Integral2}(M_2, \max_+(f)) | U^c \, \mathrm{d} M_1$.

Consider g_2 being a partial function from X_1 to $\overline{\mathbb{R}}$ such that dom $g_2 = \text{dom}(\text{Integral2}(M_2, \max_(f)))$ and $g_2 \upharpoonright U^c = \text{Integral2}(M_2, \max_(f)) \upharpoonright U^c$ and g_2 is integrable on M_1 and $\int g_2 \, dM_1 = \int \text{Integral2}(M_2, \max_(f)) \upharpoonright U^c$ dM_1 . Consider g being a partial function from X_1 to $\overline{\mathbb{R}}$ such that dom $g = \text{dom}(\text{Integral2}(M_2, f))$ and $g \upharpoonright U^c = \text{Integral2}(M_2, f) \upharpoonright U^c$ and g is integrable on M_1 and $\int g \, dM_1 = \int \text{Integral2}(M_2, f) \upharpoonright U^c \, dM_1$. $\int f \, d \operatorname{ProdMeas}(M_1, M_2) = \int g \upharpoonright U^c \, dM_1$. \Box

(31) Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , a partial function f from $X_1 \times X_2$ to $\overline{\mathbb{R}}$, and an element S_4 of S_2 . Suppose M_1 is σ -finite and M_2 is σ -finite and f is integrable on ProdMeas (M_1, M_2) and $X_2 = S_4$. Then there exists an element V of S_2 such that

72

- (i) $M_2(V) = 0$, and
- (ii) for every element y of X_2 such that $y \in V^c$ holds $\operatorname{ProjPMap2}(f, y)$ is integrable on M_1 , and
- (iii) Integral1 $(M_1, |f|)$ V^c is a partial function from X_2 to \mathbb{R} , and
- (iv) Integral1 (M_1, f) is $(S_4 \setminus V)$ -measurable, and
- (v) Integral1 (M_1, f) $\upharpoonright V^c$ is integrable on M_2 , and
- (vi) Integral1 (M_1, f) $\upharpoonright V^c \in \text{the } L^1 \text{ functions of } M_2, \text{ and }$
- (vii) there exists a function g from X_2 into $\overline{\mathbb{R}}$ such that g is integrable on M_2 and $g \upharpoonright V^c = \text{Integral1}(M_1, f) \upharpoonright V^c$ and $\int f \, d \operatorname{ProdMeas}(M_1, M_2) = \int g \, dM_2$.

PROOF: Consider A being an element of $\sigma(\text{MeasRect}(S_1, S_2))$ such that A = dom f and f is A-measurable. Integral1 $(M_1, |f|)$ is integrable on M_2 and Integral1 $(M_1, \max_+(f))$ is integrable on M_2 and Integral1 $(M_1, \max_+(f))$ is integrable on M_2 and Integral1 $(M_1, \max_-(f))$ is integrable on M_2 . Integral1 $(M_1, |f|)$ is finite M_2 -a.e.. Consider V being an element of S_2 such that $M_2(V) = 0$ and Integral1 $(M_1, |f|) \upharpoonright V^c$ is a partial function from X_2 to \mathbb{R} . For every element y of X_2 such that $y \in V^c$ holds ProjPMap2(f, y) is integrable on M_1 by (7), [5, (31)]. Consider g_1 being a partial function from X_2 to \mathbb{R} such that dom $g_1 = \text{dom}(\text{Integral1}(M_1, \max_+(f)))$ and $g_1 \upharpoonright V^c = \text{Integral1}(M_1, \max_+(f)) \upharpoonright V^c$ and g_1 is integrable on M_2 and $\int g_1 \, dM_2 = \int \text{Integral1}(M_1, \max_+(f)) \upharpoonright V^c \, dM_2$.

Consider g_2 being a partial function from X_2 to $\overline{\mathbb{R}}$ such that dom $g_2 = \text{dom}(\text{Integral1}(M_1, \max_(f)))$ and $g_2 \upharpoonright V^c = \text{Integral1}(M_1, \max_(f)) \upharpoonright V^c$ and g_2 is integrable on M_2 and $\int g_2 \, dM_2 = \int \text{Integral1}(M_1, \max_(f)) \upharpoonright V^c$ dM_2 . Consider g being a partial function from X_2 to $\overline{\mathbb{R}}$ such that dom $g = \text{dom}(\text{Integral1}(M_1, f))$ and $g \upharpoonright V^c = \text{Integral1}(M_1, f) \upharpoonright V^c$ and g is integrable on M_2 and $\int g \, dM_2 = \int \text{Integral1}(M_1, f) \upharpoonright V^c \, dM_2$. $\int f \, d \operatorname{ProdMeas}(M_1, M_2) = \int g \upharpoonright V^c \, dM_2$. \Box

Let us consider non empty sets X_1 , X_2 , a σ -field S_1 of subsets of X_1 , a σ -field S_2 of subsets of X_2 , a σ -measure M_1 on S_1 , a σ -measure M_2 on S_2 , and a partial function f from $X_1 \times X_2$ to $\overline{\mathbb{R}}$. Now we state the propositions:

- (32) Suppose M_1 is σ -finite and M_2 is σ -finite and f is integrable on ProdMeas (M_1, M_2) and for every element x of X_1 , $(\text{Integral}_2(M_2, |f|))(x) < +\infty$. Then
 - (i) for every element x of X_1 , ProjPMap1(f, x) is integrable on M_2 , and
 - (ii) for every element U of S_1 , Integral $2(M_2, f)$ is U-measurable, and
 - (iii) Integral2 (M_2, f) is integrable on M_1 , and

- (iv) $\int f \, \mathrm{d} \operatorname{ProdMeas}(M_1, M_2) = \int \operatorname{Integral}(M_2, f) \, \mathrm{d}M_1$, and
- (v) Integral2 $(M_2, f) \in$ the L^1 functions of M_1 .

The theorem is a consequence of (7), (24), (6), and (17).

- (33) Suppose M_1 is σ -finite and M_2 is σ -finite and f is integrable on ProdMeas (M_1, M_2) and for every element y of X_2 , $(Integral1(M_1, |f|))(y) < +\infty$. Then
 - (i) for every element y of X_2 , ProjPMap2(f, y) is integrable on M_1 , and
 - (ii) for every element V of S_2 , Integral1 (M_1, f) is V-measurable, and
 - (iii) Integral (M_1, f) is integrable on M_2 , and
 - (iv) $\int f \, \mathrm{d} \operatorname{ProdMeas}(M_1, M_2) = \int \operatorname{Integral1}(M_1, f) \, \mathrm{d}M_2$, and
 - (v) Integral $(M_1, f) \in \text{the } L^1$ functions of M_2 .

The theorem is a consequence of (7), (24), (6), and (17).

References

- Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [2] Heinz Bauer. Measure and Integration Theory. Walter de Gruyter Inc., 2002.
- [3] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. *Measure theory*, volume 1. Springer, 2007.
- [4] Noboru Endou. Fubini's theorem on measure. Formalized Mathematics, 25(1):1–29, 2017. doi:10.1515/forma-2017-0001.
- [5] Noboru Endou. Integral of non positive functions. Formalized Mathematics, 25(3):227-240, 2017. doi:10.1515/forma-2017-0022.
- [6] Noboru Endou. Fubini's theorem for non-negative or non-positive functions. Formalized Mathematics, 26(1):49–67, 2018. doi:10.2478/forma-2018-0005.
- [7] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.
- [8] P. R. Halmos. Measure Theory. Springer-Verlag, 1974.

Accepted March 11, 2019