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Summary. In this article, we formalized in Mizar [4], [1] simple partial
differential equations. In the first section, we formalized partial differentiability
and partial derivative. The next section contains the method of separation of
variables for one-dimensional wave equation. In the last section, we formalized
the superposition principle. We referred to [6], [3], [5] and [9] in this formalization.
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1. Preliminaries

From now on m, n denote non zero elements of N, i, j, k denote elements of
N, Z denotes a subset of R2, c denotes a real number, I denotes a non empty
finite sequence of elements of N, and d1, d2 denote elements of R.

Now we state the proposition:

(1) Let us consider a non zero element m of N, a subset X ofRm, a non emp-
ty finite sequence I of elements of N, and a partial function f from Rm to
R. Suppose f is partially differentiable on X w.r.t. I. Then dom(f�IX) =
X.

Let us note that ΩR is open and ΩR2 is open.
Now we state the proposition:
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(2) Let us consider a partial function f from R to R, a subset Z of R, and
a real number x0. Suppose Z is open and x0 ∈ Z. Then

(i) f is differentiable in x0 iff f�Z is differentiable in x0, and

(ii) if f is differentiable in x0, then f ′(x0) = (f�Z)′(x0).

Proof: f is differentiable in x0 iff f�Z is differentiable in x0. �

Let us consider a partial function f from R to R and a subset X of R. Now
we state the propositions:

(3) If X is open and X ⊆ dom f , then f is differentiable on X iff f�X is
differentiable on X. The theorem is a consequence of (2).

(4) IfX is open andX ⊆ dom f and f is differentiable onX, then (f�X)′�X =
f ′�X . The theorem is a consequence of (3) and (2).

Let us consider a partial function f from R to R and a subset Z of R. Now
we state the propositions:

(5) If Z ⊆ dom f and Z is open and f is differentiable 1 times on Z, then f
is differentiable on Z and (f ′(Z))(1) = f ′�Z . The theorem is a consequence
of (3) and (4).

(6) Suppose Z ⊆ dom f and Z is open and f is differentiable 2 times on Z.
Then

(i) f is differentiable on Z, and

(ii) (f ′(Z))(1) = f ′�Z , and

(iii) f ′�Z is differentiable on Z, and

(iv) (f ′(Z))(2) = (f ′�Z)′�Z .

The theorem is a consequence of (5).

(7) Let us consider subsets X, T of R, a partial function f from R to R, and
a partial function g from R to R. Suppose X ⊆ dom f and T ⊆ dom g.
Then there exists a partial function u from R2 to R such that

(i) domu = {〈x, t〉, where x, t are real numbers : x ∈ X and t ∈ T},
and

(ii) for every real numbers x, t such that x ∈ X and t ∈ T holds u/〈x,t〉 =
f/x · (g/t).

Proof: Define Q[object, object] ≡ there exist real numbers x, t such that
x ∈ X and t ∈ T and $1 = 〈x, t〉 and $2 = f/x·(g/t). For every objects z, w1,
w2 such that z ∈ R2 and Q[z, w1] and Q[z, w2] holds w1 = w2. Consider
u being a partial function from R2 to R such that for every object z,
z ∈ domu iff z ∈ R2 and there exists an object w such that Q[z, w] and
for every object z such that z ∈ domu holds Q[z, u(z)]. For every object z,
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z ∈ domu iff z ∈ {〈x, t〉, where x, t are real numbers : x ∈ X and t ∈ T}.
Consider x1, t1 being real numbers such that x1 ∈ X and t1 ∈ T and 〈x,
t〉 = 〈x1, t1〉 and u(〈x, t〉) = f/x1 · (g/t1). �

Let us consider a partial function f from R to R, a partial function g from
R to R, a partial function u from R2 to R, real numbers x0, t0, and an element
z of R2. Now we state the propositions:

(8) Suppose domu = {〈x, t〉, where x, t are real numbers : x ∈ dom f and
t ∈ dom g} and for every real numbers x, t such that x ∈ dom f and
t ∈ dom g holds u/〈x,t〉 = f/x · (g/t) and z = 〈x0, t0〉 and x0 ∈ dom f and
t0 ∈ dom g. Then

(i) u · (reproj(1, z)) = g/t0 · f , and

(ii) u · (reproj(2, z)) = f/x0 · g.

Proof: For every object s, s ∈ dom(u · (reproj(1, z))) iff s ∈ dom f .
For every object s, s ∈ dom(u · (reproj(2, z))) iff s ∈ dom g. For every
object s such that s ∈ dom(u · (reproj(1, z))) holds (u · (reproj(1, z)))(s) =
(g/t0 · f)(s). For every object s such that s ∈ dom(u · (reproj(2, z))) holds
(u · (reproj(2, z)))(s) = (f/x0 · g)(s) by [7, (14)]. �

(9) Suppose x0 ∈ dom f and t0 ∈ dom g and z = 〈x0, t0〉 and domu =
{〈x, t〉, where x, t are real numbers : x ∈ dom f and t ∈ dom g} and f is
differentiable in x0 and for every real numbers x, t such that x ∈ dom f

and t ∈ dom g holds u/〈x,t〉 = f/x · (g/t). Then

(i) u is partially differentiable in z w.r.t. 1, and

(ii) partdiff(u, z, 1) = f ′(x0) · (g/t0).
The theorem is a consequence of (8).

(10) Suppose x0 ∈ dom f and t0 ∈ dom g and z = 〈x0, t0〉 and domu =
{〈x, t〉, where x, t are real numbers : x ∈ dom f and t ∈ dom g} and g is
differentiable in t0 and for every real numbers x, t such that x ∈ dom f

and t ∈ dom g holds u/〈x,t〉 = f/x · (g/t). Then

(i) u is partially differentiable in z w.r.t. 2, and

(ii) partdiff(u, z, 2) = f/x0 · (g′(t0)).

The theorem is a consequence of (8).

Let us consider subsets X, T of R, a subset Z of R2, a partial function f

from R to R, a partial function g from R to R, and a partial function u from
R2 to R. Now we state the propositions:

(11) Suppose X ⊆ dom f and T ⊆ dom g and X is open and T is open
and Z is open and Z = {〈x, t〉, where x, t are real numbers : x ∈ X and
t ∈ T} and domu = {〈x, t〉, where x, t are real numbers : x ∈ dom f and
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t ∈ dom g} and f is differentiable on X and g is differentiable on T and
for every real numbers x, t such that x ∈ dom f and t ∈ dom g holds
u/〈x,t〉 = f/x · (g/t). Then

(i) u is partially differentiable on Z w.r.t. 〈1〉, and

(ii) for every real numbers x, t such that x ∈ X and t ∈ T holds
(u�〈1〉Z)/〈x,t〉 = f ′(x) · (g/t), and

(iii) u is partially differentiable on Z w.r.t. 〈2〉, and

(iv) for every real numbers x, t such that x ∈ X and t ∈ T holds
(u�〈2〉Z)/〈x,t〉 = f/x · (g′(t)).

Proof: Z ⊆ domu. For every element z of R2 such that z ∈ Z holds u
is partially differentiable in z w.r.t. 1. For every real numbers x, t and for
every element z of R2 such that x ∈ X and t ∈ T and z = 〈x, t〉 holds
partdiff(u, z, 1) = f ′(x) ·(g/t). For every real numbers x, t such that x ∈ X
and t ∈ T holds (u�〈1〉Z)/〈x,t〉 = f ′(x) · (g/t). For every element z of R2

such that z ∈ Z holds u is partially differentiable in z w.r.t. 2. For every
real numbers x, t and for every element z of R2 such that x ∈ X and t ∈ T
and z = 〈x, t〉 holds partdiff(u, z, 2) = f/x · (g′(t)). �

(12) Suppose X ⊆ dom f and T ⊆ dom g and X is open and T is open
and Z is open and Z = {〈x, t〉, where x, t are real numbers : x ∈ X and
t ∈ T} and domu = {〈x, t〉, where x, t are real numbers : x ∈ dom f and
t ∈ dom g} and f is differentiable 2 times on X and g is differentiable
2 times on T and for every real numbers x, t such that x ∈ dom f and
t ∈ dom g holds u/〈x,t〉 = f/x · (g/t). Then

(i) u is partially differentiable on Z w.r.t. 〈1〉 a 〈1〉, and

(ii) for every real numbers x, t such that x ∈ X and t ∈ T holds
(u�〈1〉

a〈1〉Z)/〈x,t〉 = (f ′(X))(2)/x · (g/t), and

(iii) u is partially differentiable on Z w.r.t. 〈2〉 a 〈2〉, and

(iv) for every real numbers x, t such that x ∈ X and t ∈ T holds
(u�〈2〉

a〈2〉Z)/〈x,t〉 = f/x · ((g′(T ))(2)/t).

Proof: u is partially differentiable on Z w.r.t. 〈1〉 and for every real
numbers x, t such that x ∈ X and t ∈ T holds (u�〈1〉Z)/〈x,t〉 = f ′(x) · (g/t)
and u is partially differentiable on Z w.r.t. 〈2〉 and for every real numbers
x, t such that x ∈ X and t ∈ T holds (u�〈2〉Z)/〈x,t〉 = f/x · (g′(t)). u is
partially differentiable on Z w.r.t. 1. For every real numbers x, t such
that x ∈ dom(f ′�X) and t ∈ dom(g�T ) holds (u�〈1〉Z)/〈x,t〉 = (f ′�X)/x ·
((g�T )/t). u�

〈1〉Z is partially differentiable on Z w.r.t. 〈1〉 and for every
real numbers x, t such that x ∈ X and t ∈ T holds ((u�〈1〉Z)�〈1〉Z)/〈x,t〉 =
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(f ′�X)′(x)·((g�T )/t). For every real numbers x, t such that x ∈ X and t ∈ T
holds (u�〈1〉

a〈1〉Z)/〈x,t〉 = (f ′(X))(2)/x · (g/t). u is partially differentiable
on Z w.r.t. 2. For every real numbers x, t such that x ∈ dom(f�X) and
t ∈ dom(g′�T ) holds (u�〈2〉Z)/〈x,t〉 = (f�X)/x · ((g′�T )/t). u�

〈2〉Z is partially
differentiable on Z w.r.t. 〈2〉 and for every real numbers x, t such that
x ∈ X and t ∈ T holds ((u�〈2〉Z)�〈2〉Z)/〈x,t〉 = (f�X)/x · ((g′�T )′(t)). �

(13) Let us consider functions f , g from R into R, a partial function u from
R2 to R, and a real number c. Suppose f is differentiable 2 times on ΩR
and g is differentiable 2 times on ΩR and domu = ΩR2 and for every
real numbers x, t, u/〈x,t〉 = f/x · (g/t) and for every real numbers x, t,
f/x · ((g′(ΩR))(2)/t) = c2 · ((f ′(ΩR))(2)/x) · (g/t). Then

(i) u is partially differentiable on ΩR2 w.r.t. 〈1〉 a 〈1〉, and

(ii) for every real numbers x, t such that x, t ∈ ΩR holds

(u�〈1〉
a〈1〉ΩR2)/〈x,t〉 = (f ′(ΩR))(2)/x · (g/t), and

(iii) u is partially differentiable on ΩR2 w.r.t. 〈2〉 a 〈2〉, and

(iv) for every real numbers x, t such that x, t ∈ ΩR holds

(u�〈2〉
a〈2〉ΩR2)/〈x,t〉 = f/x · ((g′(ΩR))(2)/t), and

(v) for every real numbers x, t, (u�〈2〉
a〈2〉ΩR2)/〈x,t〉 =

c2 · ((u�〈1〉a〈1〉ΩR2)/〈x,t〉).

The theorem is a consequence of (12).

(14) Let us consider real numbers A, B, e, and a function f from R into R.
Suppose for every real number x, f(x) = A · (the function cos)(e · x) +B ·
(the function sin)(e · x). Then

(i) f is differentiable on ΩR, and

(ii) for every real number x, (f ′�ΩR
)(x) = −e · (A · (the function sin)(e · x)

−B · (the function cos)(e · x)).

Proof: Reconsider f1 = A · (the function cos) · (e · idΩR), f2 = B ·
(the function sin) · (e · idΩR) as a partial function from R to R. Reconsider
Z = ΩR as an open subset of R. Reconsider E = e · idΩR as a function from
R into R. For every real number x such that x ∈ Z holds E(x) = e ·x. For
every object x such that x ∈ dom f holds f(x) = f1(x) + f2(x). For every
real number x, (f ′�ΩR

)(x) = −e · (A · (the function sin)(e · x)−B·
(the function cos)(e · x)). �
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2. The Method of Separation of Variables for One-dimensional
Wave Equation

Now we state the propositions:

(15) Let us consider real numbers A, B, e, and a function f from R into R.
Suppose for every real number x, f(x) = A · (the function cos)(e · x) +B ·
(the function sin)(e · x). Then

(i) f is differentiable 2 times on ΩR, and

(ii) for every real number x, (f ′�ΩR
)(x) = −e · (A · (the function sin)(e · x)

−B · (the function cos)(e · x)) and ((f ′�ΩR
)′�ΩR

)(x) = −e2 · (A·
(the function cos)(e · x) +B · (the function sin)(e · x)) and

(f ′(ΩR))(2)/x + e2 · (f/x) = 0.

Proof: f is differentiable on ΩR and for every real number x, (f ′�ΩR
)(x) =

−e · (A · (the function sin)(e · x)−B · (the function cos)(e · x)). For every
real number x, (f ′�ΩR

)(x) = e · B · (the function cos)(e · x) + (−e ·A) ·
(the function sin)(e · x). For every natural number i such that i ¬ 2 − 1
holds (f ′(ΩR))(i) is differentiable on ΩR. �

(16) Let us consider real numbers A, B, e. Then there exists a function f

from R into R such that for every real number x, f(x) = A · (the function
cos)(e · x) +B · (the function sin)(e · x).
Proof: Define P[object, object] ≡ there exists a real number t such that
$1 = t and $2 = A ·(the function cos)(e ·t)+B ·(the function sin)(e ·t). For
every object x such that x ∈ R there exists an object y such that y ∈ R
and P[x, y]. Consider f being a function from R into R such that for every
object x such that x ∈ R holds P[x, f(x)]. �

(17) Let us consider real numbers A, B, C, d, c, e, and functions f , g from
R into R. Suppose for every real number x, f(x) = A · (the function
cos)(e ·x) +B · (the function sin)(e ·x) and for every real number t, g(t) =
C · (the function cos)(e ·c · t)+d · (the function sin)(e ·c · t). Let us consider
real numbers x, t. Then f/x · ((g′(ΩR))(2)/t) = c2 · ((f ′(ΩR))(2)/x) · (g/t).
The theorem is a consequence of (15).

(18) Let us consider functions f , g from R into R, and a function u from R2

into R. Suppose f is differentiable 2 times on ΩR and g is differentiable
2 times on ΩR and for every real numbers x, t, f/x · ((g′(ΩR))(2)/t) =
c2 ·((f ′(ΩR))(2)/x)·(g/t) and for every real numbers x, t, u/〈x,t〉 = f/x ·(g/t).
Then

(i) u is partially differentiable on ΩR2 w.r.t. 〈1〉, and

(ii) for every real numbers x, t, (u�〈1〉ΩR2)/〈x,t〉 = f ′(x) · (g/t), and
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(iii) u is partially differentiable on ΩR2 w.r.t. 〈2〉, and

(iv) for every real numbers x, t, (u�〈2〉ΩR2)/〈x,t〉 = f/x · (g′(t)), and

(v) f is differentiable 2 times on ΩR, and

(vi) g is differentiable 2 times on ΩR, and

(vii) u is partially differentiable on ΩR2 w.r.t. 〈1〉 a 〈1〉, and

(viii) for every real numbers x, t, (u�〈1〉
a〈1〉ΩR2)/〈x,t〉 =

(f ′(ΩR))(2)/x · (g/t), and

(ix) u is partially differentiable on ΩR2 w.r.t. 〈2〉 a 〈2〉, and

(x) for every real numbers x, t, (u�〈2〉
a〈2〉ΩR2)/〈x,t〉 =

f/x · ((g′(ΩR))(2)/t), and

(xi) for every real numbers x, t, (u�〈2〉
a〈2〉ΩR2)/〈x,t〉 =

c2 · ((u�〈1〉a〈1〉ΩR2)/〈x,t〉).

The theorem is a consequence of (11) and (13).

(19) Let us consider real numbers A, B, C, d, e, c, and a function u from R2

into R. Suppose for every real numbers x, t, u/〈x,t〉 = (A · (the function
cos)(e · x) +B · (the function sin)(e · x)) · (C · (the function cos)(e · c · t) +
d · (the function sin)(e · c · t)). Then

(i) u is partially differentiable on ΩR2 w.r.t. 〈1〉, and

(ii) for every real numbers x, t, (u�〈1〉ΩR2)/〈x,t〉 =

(−A · e · (the function sin)(e · x)+B ·e · (the function cos)(e ·x)) · (C ·
(the function cos)(e · c · t) + d · (the function sin)(e · c · t)), and

(iii) u is partially differentiable on ΩR2 w.r.t. 〈2〉, and

(iv) for every real numbers x, t, (u�〈2〉ΩR2)/〈x,t〉 = (A·(the function cos)(e·
x)+B·(the function sin)(e·x))·(−C · (e · c) · (the function sin)(e · c · t)
+d · (e · c) · (the function cos)(e · c · t)), and

(v) u is partially differentiable on ΩR2 w.r.t. 〈1〉 a 〈1〉, and

(vi) for every real numbers x, t, (u�〈1〉
a〈1〉ΩR2)/〈x,t〉 =

−e2 · (A · (the function cos)(e · x) +B · (the function sin)(e · x)) · (C·
(the function cos)(e · c · t) + d · (the function sin)(e · c · t)) and u is par-
tially differentiable on ΩR2 w.r.t. 〈2〉a 〈2〉 and for every real numbers
x, t, (u�〈2〉

a〈2〉ΩR2)/〈x,t〉 = −(e · c)2 · (A · (the function cos)(e · x) +B·
(the function sin)(e · x)) · (C · (the function cos)(e · c · t) + d·
(the function sin)(e · c · t)), and
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(vii) for every real numbers x, t, (u�〈2〉
a〈2〉ΩR2)/〈x,t〉 =

c2 · ((u�〈1〉a〈1〉ΩR2)/〈x,t〉).

The theorem is a consequence of (16), (15), (17), (18), and (6).

(20) Let us consider a real number c. Then there exists a partial function u

from R2 to R such that

(i) u is partially differentiable on ΩR2 w.r.t. 〈1〉 a 〈1〉 and partially dif-
ferentiable on ΩR2 w.r.t. 〈2〉 a 〈2〉, and

(ii) for every real numbers x, t, (u�〈2〉
a〈2〉ΩR2)/〈x,t〉 =

c2 · ((u�〈1〉a〈1〉ΩR2)/〈x,t〉).

The theorem is a consequence of (16), (7), (15), (17), and (18).

3. The Superposition Principle

Now we state the propositions:

(21) Let us consider real numbers C, d, c, a natural number n, and a func-
tion u from R2 into R. Suppose for every real numbers x, t, u/〈x,t〉 =
(the function sin)(n·π·x)·(C ·(the function cos)(n·π·c·t)+d·(the function
sin)(n · π · c · t)). Then

(i) u is partially differentiable on ΩR2 w.r.t. 〈1〉, and

(ii) for every real numbers x, t, (u�〈1〉ΩR2)/〈x,t〉 = n · π · (the function
cos)(n · π · x) · (C · (the function cos)(n · π · c · t) + d · (the function
sin)(n · π · c · t)), and

(iii) u is partially differentiable on ΩR2 w.r.t. 〈2〉, and

(iv) for every real numbers x, t, (u�〈2〉ΩR2)/〈x,t〉 = (the function sin)(n ·
π · x) · (−C · (n · π · c) · (the function sin)(n · π · c · t) + d · (n · π · c) ·
(the function cos)(n · π · c · t)), and

(v) u is partially differentiable on ΩR2 w.r.t. 〈1〉 a 〈1〉, and

(vi) for every real numbers x, t, (u�〈1〉
a〈1〉ΩR2)/〈x,t〉 = −(n · π)2·

(the function sin)(n · π · x) · (C · (the function cos)(n · π · c · t) + d·
(the function sin)(n · π · c · t)) and u is partially differentiable on ΩR2
w.r.t. 〈2〉a 〈2〉 and for every real numbers x, t, (u�〈2〉

a〈2〉ΩR2)/〈x,t〉 =
−(n · π · c)2 · (the function sin)(n · π · x) · (C · (the function cos)(n·
π · c · t) + d · (the function sin)(n · π · c · t)), and

(vii) for every real number t, u/〈0,t〉 = 0 and u/〈1,t〉 = 0, and
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(viii) for every real numbers x, t, (u�〈2〉
a〈2〉ΩR2)/〈x,t〉 =

c2 · ((u�〈1〉a〈1〉ΩR2)/〈x,t〉).

Proof: Set e = n · π. For every real numbers x, t, (u�〈1〉ΩR2)/〈x,t〉 =
e · (the function cos)(e ·x) · (C · (the function cos)(e ·c · t)+d · (the function
sin)(e · c · t)). For every real numbers x, t, (u�〈2〉ΩR2)/〈x,t〉 = (the function
sin)(e ·x) ·(−C · (e · c) · (the function sin)(e · c · t)+d ·(e ·c) ·(the function
cos)(e · c · t)). For every real numbers x, t, (u�〈1〉

a〈1〉ΩR2)/〈x,t〉 = −e2·
(the function sin)(e · x) · (C · (the function cos)(e · c · t) + d·
(the function sin)(e · c · t)). For every real numbers x, t, (u�〈2〉

a〈2〉ΩR2)/〈x,t〉 =
−(e · c)2 · (the function sin)(e · x) · (C · (the function cos)(e · c · t) + d·
(the function sin)(e · c · t)). For every real number t, u/〈0,t〉 = 0 and u/〈1,t〉 =
0 by [8, (30)]. �

(22) Let us consider partial functions u, v fromR2 to R, a subset Z ofR2, and
a real number c. Suppose Z is open and Z ⊆ domu and Z ⊆ dom v and u
is partially differentiable on Z w.r.t. 〈1〉a〈1〉 and partially differentiable on
Z w.r.t. 〈2〉a 〈2〉 and for every real numbers x, t such that 〈x, t〉 ∈ Z holds
(u�〈2〉

a〈2〉Z)/〈x,t〉 = c2 · ((u�〈1〉a〈1〉Z)/〈x,t〉) and v is partially differentiable
on Z w.r.t. 〈1〉 a 〈1〉 and partially differentiable on Z w.r.t. 〈2〉 a 〈2〉 and
for every real numbers x, t such that 〈x, t〉 ∈ Z holds (v�〈2〉

a〈2〉Z)/〈x,t〉 =

c2 · ((v�〈1〉a〈1〉Z)/〈x,t〉). Then

(i) Z ⊆ dom(u+ v), and

(ii) u + v is partially differentiable on Z w.r.t. 〈1〉 a 〈1〉 and partially
differentiable on Z w.r.t. 〈2〉 a 〈2〉, and

(iii) for every real numbers x, t such that 〈x, t〉 ∈ Z holds

(u+ v�〈2〉
a〈2〉Z)/〈x,t〉 = c2 · ((u+ v�〈1〉

a〈1〉Z)/〈x,t〉).

Proof: For every real numbers x, t such that 〈x, t〉 ∈ Z holds (u +
v�〈2〉

a〈2〉Z)/〈x,t〉 = c2 · ((u+ v�〈1〉
a〈1〉Z)/〈x,t〉) by (1), [2, (75)]. �

(23) Let us consider a sequence u of partial functions fromR2 into R, a subset
Z of R2, and a real number c. Suppose Z is open and for every natural
number i, Z ⊆ dom(u(i)) and dom(u(i)) = dom(u(0)) and u(i) is par-
tially differentiable on Z w.r.t. 〈1〉 a 〈1〉 and partially differentiable on Z

w.r.t. 〈2〉 a 〈2〉 and for every real numbers x, t such that 〈x, t〉 ∈ Z holds
(u(i)�〈2〉

a〈2〉Z)/〈x,t〉 = c2 · ((u(i)�〈1〉
a〈1〉Z)/〈x,t〉). Let us consider a natural

number i. Then

(i) Z ⊆ dom(((
∑κ
α=0 u(α))κ∈N)(i)), and

(ii) ((
∑κ
α=0 u(α))κ∈N)(i) is partially differentiable on Z w.r.t. 〈1〉 a 〈1〉

and partially differentiable on Z w.r.t. 〈2〉 a 〈2〉, and
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(iii) for every real numbers x, t such that 〈x, t〉 ∈ Z holds

(((
∑κ
α=0 u(α))κ∈N)(i)�〈2〉

a〈2〉Z)/〈x,t〉 =

c2 · ((((
∑κ
α=0 u(α))κ∈N)(i)�〈1〉

a〈1〉Z)/〈x,t〉).

Proof: Define X [natural number] ≡ Z ⊆ dom(((
∑κ
α=0 u(α))κ∈N)($1))

and ((
∑κ
α=0 u(α))κ∈N)($1) is partially differentiable on Z w.r.t. 〈1〉 a 〈1〉

and partially differentiable on Z w.r.t. 〈2〉a 〈2〉 and for every real numbers
x, t such that 〈x, t〉 ∈ Z holds (((

∑κ
α=0 u(α))κ∈N)($1)�〈2〉

a〈2〉Z)/〈x,t〉 = c2 ·
((((
∑κ
α=0 u(α))κ∈N)($1)�〈1〉

a〈1〉Z)/〈x,t〉). For every natural number i such
that X [i] holds X [i+ 1]. For every natural number n, X [n]. �
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