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Summary. Rough sets, developed by Pawlak [15], are important tool to
describe situation of incomplete or partially unknown information. In this article
we give the formal characterization of two closely related rough approximations,
along the lines proposed in a paper by Gomolińska [2]. We continue the formali-
zation of rough sets in Mizar [1] started in [6].
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0. Introduction

In the paper [9] published in 2010 we discussed some pros and cons of various
approaches to rough operators dealing with some of the issues raised by Anna
Gomolińska [2]. Even if our chosen formal framework [6] faithfully reflected
Pawlak’s ideas [15], also possibility of other views for the same topic was quite
tempting. Our question was if the Mizar Mathematical Library is ready to do
some formal reasoning without much additional work needed to bridge the gap
between informal knowledge and its formal countepart present in the repository
of automatically verified mathematical knowledge. This expectation is not really
that trivial as we noted after an unsatisfactory – at least from our point of view –
attempt to formalize Rough Concept Analysis in Mizar [12]. On the other hand,
reuse of lattice theory to develop a rough framework [4] according to Järvinen
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[13] or bulding a theory of approximations based on pure set theory in style of
[16], [17] showed the usefulness of automated theorem proving methods [3] in
order to obtain new results, with possibility of theory merging, taking care of
possible duplications [11].

Our main aim was to use the existing implementation of rough sets in Mizar
to provide the formal proof of the following theorem (original notation of [2]):

Theorem 4.1 For any sets x, y ⊆ U , objects u,w ∈ U , and i = 0, 1,
it holds that:

1. fd0 ¬ id ¬ f0.
2. fd1 ¬ id ¬ f1.
3. f0(x) is definable.

4. ∀u ∈ f1(x).κ(I(u), x) > 0.

5. ∀u ∈ fd1 (x).κ(I(u), x) = 1.

6. If τ(u) = τ(w), then u ∈ f0(x) iff w ∈ f0(x); and similarly for
fd0 .

7. If I(u) = I(w), then u ∈ f1(x) iff w ∈ f1(x); and similarly for
fd1 .

8. fi(∅) = ∅ and fi(U) = U ; and similarly for fdi .

9. fi and fdi are monotone.

10. fi(x ∪ y) = fi(x) ∪ fi(y).

11. fdi (x ∪ y) ⊇ fdi (x) ∪ fdi (y).

12. fi(x ∩ y) ⊆ fi(x) ∩ fi(y).

13. fdi (x ∩ y) = fdi (x) ∩ fdi (y).

With the exception of two subitems (4. and 5.) dealing with κ as rough inclusion
operator, we succeeded.

It should be mentioned, that most of the reasoning on the properties of the
generalized approximation operator was done under the assumption

∀u∈U u ∈ I(u),

which we called map-reflexive of the uncertainty mapping I. Another, more
general relational aproach was adopted in [8] which is a Mizar counterpart of
[17]. There the reflexivity of binary indiscernibility relation was assumed where
needed.

Automated math-asistants can offer a new – semiautomated – insight [10]
also for quite elementary notions: in Section 4, we introduced more general Mizar
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functor dealing with arbitrary maps from the universe into its powerset, so that
we could obtain most of properties of mappings f0 and f1 as straightforward
consequences. We kept them both however, to assure full compatibility with [2].

1. Preliminaries: Map-Reflexivity

Let R be a non empty set and I be a function from R into 2R. We say that
I is map-reflexive if and only if

(Def. 1) for every element u of R, u ∈ I(u).

The functor singletonR yielding a function from R into 2R is defined by

(Def. 2) for every element x of R, it(x) = {x}.
Let us observe that singletonR is map-reflexive.
Now we state the proposition:

(1) Let us consider a non empty relational structure R, and a function I from
the carrier of R into 2α. Suppose I is map-reflexive. Then the carrier of
R =

⋃
(I◦(ΩR)), where α is the carrier of R.

From now on f , g denote functions and R denotes a non empty, reflexive
relational structure.

Now we state the propositions:

(2) LAp(R) ⊆̇ id2α , where α is the carrier of R.
Proof: Set f = LAp(R). Set g = id2(the carrier of R) . For every set i such
that i ∈ dom f holds f(i) ⊆ g(i) by [7, (35)]. �

(3) id2α ⊆̇ UAp(R), where α is the carrier of R.
Proof: Set f = id2(the carrier of R) . Set g = UAp(R). For every set i such
that i ∈ dom f holds f(i) ⊆ g(i). �

2. Properties of Flipping Operator fd

From now on R denotes a non empty relational structure.
Now we state the propositions:

(4) Let us consider a map f of R, and subsets x, y of R. Then Flip Flip f = f .

(5) Let us consider maps f , g of R. Then Flip f · g = (Flip f) · (Flip g).
Proof: Set f2 = Flip f · g. Set f1 = Flip f . Set g1 = Flip g. For every
subset x of R, f2(x) = (f1 · g1)(x). �

(6) Let us consider a map f of R. Then f(∅) = ∅ if and only if
(Flip f)(the carrier of R) = the carrier of R.
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3. Uncertainty Mappings I and τ

Let R be a non empty relational structure. The functor IR yielding a function
from the carrier of R into 2(the carrier of R) is defined by

(Def. 3) for every element x of R, it(x) = Coim((the internal relation of R), x).

Now we state the proposition:

(7) Let us consider elements w, u of R. Then 〈〈w, u〉〉 ∈ the internal relation
of R if and only if w ∈ (IR)(u).

Let R be a non empty relational structure. The functor τR yielding a function
from the carrier of R into 2(the carrier of R) is defined by

(Def. 4) for every element u of R, it(u) = (the internal relation of R)◦u.

Now we state the propositions:

(8) Let us consider elements u, w of R. Then u ∈ (the internal relation of
R)◦w if and only if w ∈ Coim((the internal relation of R), u).
Proof: If u ∈ (the internal relation ofR)◦w, then w ∈ Coim((the internal
relation ofR), u). Consider t being an object such that 〈〈w, t〉〉 ∈ the internal
relation of R and t ∈ {u}. �

(9) Let us consider elements w, u of R. Then 〈〈w, u〉〉 ∈ the internal relation
of R if and only if u ∈ (τR)(w).
Proof: If 〈〈w, u〉〉 ∈ the internal relation of R, then u ∈ (τR)(w). w ∈
Coim((the internal relation of R), u). Consider x being an object such
that 〈〈w, x〉〉 ∈ the internal relation of R and x ∈ {u}. �

4. Generalized Approximation Mappings

Let R be a non empty relational structure and f be a function from the car-
rier of R into 2(the carrier of R). The functor UApf yielding a map of R is defined
by

(Def. 5) for every subset x of R, it(x) = {u, where u is an element of R : f(u)
meets x}.

The functors: f0(R) and f1(R) yielding maps of R are defined by terms

(Def. 6) UApτR ,

(Def. 7) UApIR ,

respectively. Now we state the propositions:

(10) If the internal relation of R is symmetric, then IR = τR.
Proof: Set f = IR. Set g = τR. For every element x of R, f(x) = g(x)
by [14, (20)]. �
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(11) If the internal relation of R is symmetric, then f0(R) = f1(R). The
theorem is a consequence of (10).

(12) the internal relation of R is symmetric if and only if for every elements
u, v of R such that u ∈ (τR)(v) holds v ∈ (τR)(u). The theorem is a con-
sequence of (10), (7), and (9).

(13) f0(R) = UAp(R).

(14) Flip f0(R) = LAp(R). The theorem is a consequence of (13).

(15) Let us consider an approximation space R, and a subset x of R. Then
(f0(R))(x) is exact. The theorem is a consequence of (13).

5. The Ordering of Approximation Mappings

Now we state the propositions:

(16) If the internal relation of R is total and reflexive, then id2α ⊆̇ f0(R),
where α is the carrier of R.
Proof: Set f = id2(the carrier of R) . Set g = f0(R). For every set i such that
i ∈ dom f holds f(i) ⊆ g(i) by [5, (1)], (9). �

(17) If R is reflexive, then Flip f0(R) ⊆̇ id2α , where α is the carrier of R. The
theorem is a consequence of (14) and (2).

(18) If the internal relation of R is total and reflexive, then id2α ⊆̇ f1(R),
where α is the carrier of R.
Proof: Set f = id2(the carrier of R) . Set g = f1(R). For every set i such that
i ∈ dom f holds f(i) ⊆ g(i). �

6. Acting on the Empty Set and the Universe

In the sequel f denotes a function from the carrier of R into 2(the carrier of R).
Now we state the proposition:

(19) (UApf )(∅) = ∅.
Let us consider R and f . One can check that UApf preserves empty set.

(20) (f0(R))(∅) = ∅.
(21) (f1(R))(∅) = ∅.

Let R be a non empty, reflexive relational structure. Let us observe that
the internal relation of R is total and reflexive.

(22) If f is map-reflexive, then (UApf )(the carrier of R) = the carrier of R.
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(23) Suppose the internal relation of R is reflexive and total.
Then (f0(R))(the carrier of R) = the carrier of R.
Proof: The carrier of R ⊆ {u, where u is an element of R : (τR)(u)
meets ΩR}. �

(24) Suppose the internal relation of R is reflexive and total.
Then (f1(R))(the carrier of R) = the carrier of R.
Proof: The carrier of R ⊆ {u, where u is an element of R : (IR)(u)
meets ΩR}. �

7. Standard Properties of Approximations

Let us consider elements u, w of R and a subset x of R. Now we state the
propositions:

(25) If f(u) = f(w), then u ∈ (UApf )(x) iff w ∈ (UApf )(x).

(26) If (IR)(u) = (IR)(w), then u ∈ (f1(R))(x) iff w ∈ (f1(R))(x).

(27) If (τR)(u) = (τR)(w), then u ∈ (f0(R))(x) iff w ∈ (f0(R))(x).

(28) Let us consider a function f from the carrier of R into 2α, and a subset x
of R. Then (Flip(UApf ))(x) = {w, where w is an element of R : f(w) ⊆
x}, where α is the carrier of R.
Proof: (Flip(UApf ))(x) ⊆ {w, where w is an element of R : f(w) ⊆ x}.
Consider w being an element of R such that y = w and f(w) ⊆ x. Recon-
sider y1 = y as an element of R. y1 /∈ (UApf )(xc). �

Let us consider a subset x of R. Now we state the propositions:

(29) (Flip f0(R))(x) = {w, where w is an element of R : (τR)(w) ⊆ x}.
Proof: (Flip f0(R))(x) ⊆ {w, where w is an element of R : (τR)(w) ⊆ x}.
Consider w being an element of R such that y = w and (τR)(w) ⊆ x.
Reconsider y1 = y as an element of R. y1 /∈ (f0(R))(xc). �

(30) (Flip f1(R))(x) = {w, where w is an element of R : (IR)(w) ⊆ x}.
Proof: (Flip f1(R))(x) ⊆ {w, where w is an element of R : (IR)(w) ⊆ x}.
Consider w being an element of R such that y = w and (IR)(w) ⊆ x.
Reconsider y1 = y as an element of R. y1 /∈ (f1(R))(xc). �

Let us consider elements u, w of R and a subset x of R. Now we state the
propositions:

(31) If f(u) = f(w), then u ∈ (Flip(UApf ))(x) iff w ∈ (Flip(UApf ))(x). The
theorem is a consequence of (28).

(32) If (τR)(u) = (τR)(w), then u ∈ (Flip f0(R))(x) iff w ∈ (Flip f0(R))(x).
The theorem is a consequence of (29).
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(33) If (IR)(u) = (IR)(w), then u ∈ (Flip f1(R))(x) iff w ∈ (Flip f1(R))(x).
The theorem is a consequence of (30).

Let us consider an element w of R. Now we state the propositions:

(34) If R is reflexive, then w ∈ (IR)(w). The theorem is a consequence of (7).

(35) If R is reflexive, then w ∈ (τR)(w). The theorem is a consequence of (9).

Let R be a reflexive, non empty relational structure. One can verify that IR
is map-reflexive and τR is map-reflexive.

Now we state the propositions:

(36) If R is reflexive, then Flip f1(R) ⊆̇ id2α , where α is the carrier of R. The
theorem is a consequence of (34) and (30).

(37) (f0(R)) · (f0(R)) = f0(R) if and only if (Flip f0(R)) · (Flip f0(R)) =
Flip f0(R). The theorem is a consequence of (5).

(38) If R is reflexive, then
⋃

((IR)◦(ΩR)) = the carrier of R. The theorem is
a consequence of (34).

8. Monotonicity of Approximations

Let R be a non empty relational structure. One can verify that f0(R) is
⊆-monotone and f1(R) is ⊆-monotone.

Now we state the propositions:

(39) Let us consider a map f of R. Suppose f is ⊆-monotone. Then Flip f is
⊆-monotone.
Proof: Set g = Flip f . For every subsets A, B of R such that A ⊆ B

holds g(A) ⊆ g(B). �

(40) Flip f0(R) is ⊆-monotone.

(41) Flip f1(R) is ⊆-monotone.

9. Distributivity wrt. Set-Theoretic Operations

Now we state the proposition:

(42) Let us consider a function f from the carrier of R into 2α, and subsets
x, y of R. Then (UApf )(x ∪ y) = (UApf )(x) ∪ (UApf )(y), where α is
the carrier of R.

Let us consider subsets x, y of R. Now we state the propositions:

(43) (f0(R))(x∪ y) = (f0(R))(x)∪ (f0(R))(y). The theorem is a consequence
of (42).
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(44) (f1(R))(x∪ y) = (f1(R))(x)∪ (f1(R))(y). The theorem is a consequence
of (42).

(45) Let us consider a function f from the carrier of R into 2α, and subsets x,
y of R. Then (Flip(UApf ))(x) ∪ (Flip(UApf ))(y) ⊆ (Flip(UApf ))(x ∪ y),
where α is the carrier of R. The theorem is a consequence of (28).

Let us consider subsets x, y of R. Now we state the propositions:

(46) (Flip f0(R))(x) ∪ (Flip f0(R))(y) ⊆ (Flip f0(R))(x ∪ y). The theorem is
a consequence of (45).

(47) (Flip f1(R))(x) ∪ (Flip f1(R))(y) ⊆ (Flip f1(R))(x ∪ y). The theorem is
a consequence of (45).

(48) Let us consider a function f from the carrier of R into 2α, and subsets
x, y of R. Then (UApf )(x ∩ y) ⊆ (UApf )(x) ∩ (UApf )(y), where α is
the carrier of R.

Let us consider subsets x, y of R. Now we state the propositions:

(49) (f0(R))(x∩ y) ⊆ (f0(R))(x)∩ (f0(R))(y). The theorem is a consequence
of (48).

(50) (f1(R))(x∩ y) ⊆ (f1(R))(x)∩ (f1(R))(y). The theorem is a consequence
of (48).

(51) Let us consider a function f from the carrier of R into 2α, and subsets x,
y of R. Then (Flip(UApf ))(x) ∩ (Flip(UApf ))(y) = (Flip(UApf ))(x ∩ y),
where α is the carrier of R.

Let us consider subsets x, y of R. Now we state the propositions:

(52) (Flip f0(R))(x) ∩ (Flip f0(R))(y) = (Flip f0(R))(x ∩ y). The theorem is
a consequence of (51).

(53) (Flip f1(R))(x) ∩ (Flip f1(R))(y) = (Flip f1(R))(x ∩ y). The theorem is
a consequence of (51).
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