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Summary. The main purpose of formalization is to prove that two equ-
ations ya(z) = y, y = xz are Diophantine. These equations are explored in the
proof of Matiyasevich’s negative solution of Hilbert’s tenth problem.

In our previous work [6], we showed that from the diophantine standpoint
these equations can be obtained from lists of several basic Diophantine relations
as linear equations, finite products, congruences and inequalities. In this forma-
lization, we express these relations in terms of Diophantine set introduced in
[7]. We prove that these relations are Diophantine and then we prove several
second-order theorems that provide the ability to combine Diophantine relation
using conjunctions and alternatives as well as to substitute the right-hand side
of a given Diophantine equality as an argument in a given Diophantine relation.
Finally, we investigate the possibilities of our approach to prove that the two
equations, being the main purpose of this formalization, are Diophantine.

The formalization by means of Mizar system [3], [2] follows Z. Adamowicz,
P. Zbierski [1] as well as M. Davis [4].
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1. Preliminaries

From now on n, m, k denote natural numbers, p, q denote n-element finite
0-sequences of N, i1, i2, i3, i4, i5, i6 denote elements of n, and a, b, c, d, e denote
integers.
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Let X be a set, p be a Z-valued series of X, RF, and a be an integer element
of RF. Observe that a · p is Z-valued.

Now we state the propositions:

(1) Let us consider a non empty ordinal numberO, an element i ofO, an add-
associative, right zeroed, right complementable, well unital, distributive,
non trivial double loop structure L, and a function x from O into L. Then
eval(1 1(i, L), x) = x(i).

(2) i1 is an element of n+ k.

(3) If k < m, then n+ k ∈ n+m.

(4) Let us consider an (n + k)-element finite 0-sequence p. If n 6= 0 and
k 6= 0, then (p�n)(i1) = p(i1).

2. Basic Diophantine Relations

Now we state the propositions:

(5) Let us consider a diophantine subset A of the n-xtuples of N, and k.
Suppose k ¬ n. Then {p�k : p ∈ A} is a diophantine subset of the k-
xtuples of N.
Proof: Consider k1 being a natural number, Q being a Z-valued poly-
nomial of n + k1,RF such that for every object s, s ∈ A iff there exists
an n-element finite 0-sequence x of N and there exists a k1-element finite
0-sequence y of N such that s = x and eval(Q,@(x a y)) = 0.

Set D = {p�k, where p is an n-element finite 0-sequence of N : p ∈ A}.
D ⊆ the k-xtuples of N. Reconsider k2 = n − k as a natural number.
Reconsider P = Q as a Z-valued polynomial of k+(k2+k1),RF. For every
object s, s ∈ D iff there exists a k-element finite 0-sequence x of N and
there exists a (k2 + k1)-element finite 0-sequence y of N such that s = x
and eval(P,@(x a y)) = 0 by [5, (13)], [8, (54),(17),(27)]. �

(6) Let us consider integers a, b, c, i1, and i2. Then {p : a·p(i1) = b·p(i2)+c}
is a diophantine subset of the n-xtuples of N. The theorem is a consequence
of (1).

(7) {p : a · p(i1) > b · p(i2) + c} is a diophantine subset of the n-xtuples of
N. The theorem is a consequence of (2) and (1).

The scheme UnionDiophantine deals with a natural number n and a unary
predicate P, Q and states that

(Sch. 1) {p, where p is an n-element finite 0-sequence of N : P[p] or Q[p]} is
a diophantine subset of the n-xtuples of N

provided
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• {p, where p is an n-element finite 0-sequence of N : P[p]} is a diophantine
subset of the n-xtuples of N and

• {p, where p is an n-element finite 0-sequence of N : Q[p]} is a diophantine
subset of the n-xtuples of N.

The scheme Eq deals with a natural number n and a unary predicate P, Q
and states that

(Sch. 2) {p, where p is an n-element finite 0-sequence of N : P[p]} = {q, where
q is an n-element finite 0-sequence of N : Q[q]}

provided

• for every n-element finite 0-sequence p of N, P[p] iff Q[p].

Now we state the propositions:

(8) {p : a · p(i1)  b · p(i2) + c} is a diophantine subset of the n-xtuples of N.
Proof: Define P[finite 0-sequence of N] ≡ a · $1(i1) > b · $1(i2) + c. Define
Q[finite 0-sequence of N] ≡ a · $1(i1) = b · $1(i2) + c. Define R[finite
0-sequence of N] ≡ P[$1] or Q[$1]. Define S[finite 0-sequence of N] ≡
a ·$1(i1)  b ·$1(i2) + c. {p : P[p]} is a diophantine subset of the n-xtuples
of N. {p : Q[p]} is a diophantine subset of the n-xtuples of N. {p : P[p]
or Q[p]} is a diophantine subset of the n-xtuples of N. {p : R[p]} = {q
: S[q]}. �

(9) {p : a · p(i1) = b · p(i2) · p(i3)} is a diophantine subset of the n-xtuples of
N. The theorem is a consequence of (1).

(10) {p : there exists a natural number z such that a·p(i1) = b·p(i2)+z·c·p(i3)}
is a diophantine subset of the n-xtuples of N. The theorem is a consequence
of (2) and (1).

The scheme IntersectionDiophantine deals with a natural number n and a
unary predicate P, Q and states that

(Sch. 3) {p, where p is an n-element finite 0-sequence of N : P[p] and Q[p]} is
a diophantine subset of the n-xtuples of N

provided

• {p, where p is an n-element finite 0-sequence of N : P[p]} is a diophantine
subset of the n-xtuples of N and

• {p, where p is an n-element finite 0-sequence of N : Q[p]} is a diophantine
subset of the n-xtuples of N.

The scheme Substitution deals with a 6-ary predicate P and a ternary functor
F yielding a natural object and states that
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(Sch. 4) For every i1, i2, i3, i4, and i5, {p : P[p(i1), p(i2),F(p(i3), p(i4), p(i5)), p(i3),
p(i4), p(i5)]} is a diophantine subset of the n-xtuples of N

provided

• for every i1, i2, i3, i4, i5, and i6, {p : P[p(i1), p(i2), p(i3), p(i4), p(i5), p(i6)]}
is a diophantine subset of the n-xtuples of N and

• for every i1, i2, i3, and i4, {p : F(p(i1), p(i2), p(i3)) = p(i4)} is a diophan-
tine subset of the n-xtuples of N.

The scheme SubstitutionInt deals with a ternary predicate P and a ternary
functor F yielding an integer and states that

(Sch. 5) For every i1, i2, i3, i4, and i5, {p : P[p(i1), p(i2),F(p(i3), p(i4), p(i5))]}
is a diophantine subset of the n-xtuples of N

provided

• for every i1, i2, i3, and a, {p : P[p(i1), p(i2), a · p(i3)]} is a diophantine
subset of the n-xtuples of N and

• for every i1, i2, i3, i4, and a, {p : F(p(i1), p(i2), p(i3)) = a · p(i4)} is
a diophantine subset of the n-xtuples of N.

Now we state the propositions:

(11) {p : a·p(i1) = b·p(i2)+c·p(i3)+d} is a diophantine subset of the n-xtuples
of N. The theorem is a consequence of (1).

(12) {p : p(i1) = a · p(i2)} is a diophantine subset of the n-xtuples of N. The
theorem is a consequence of (6).

(13) {p : a · p(i1) = b} is a diophantine subset of the n-xtuples of N.
Proof: Set i2 = the element of n. Define P[finite 0-sequence of N] ≡
a · $1(i1) = b. Define Q[finite 0-sequence of N] ≡ a · $1(i1) = 0 · $1(i2) + b.
{p : P[p]} = {q : Q[q]}. �

(14) {p : p(i1) = a} is a diophantine subset of the n-xtuples of N.
Proof: Set i2 = the element of n. Define P[finite 0-sequence of N] ≡
$1(i1) = a. Define Q[finite 0-sequence of N] ≡ 1 · $1(i1) = 0 · $1(i2) + a. {p
: P[p]} = {q : Q[q]}. �

(15) {p : p(i1) = a · p(i2) + b} is a diophantine subset of the n-xtuples of N.
Proof: Define P[finite 0-sequence of N] ≡ $1(i1) = a · $1(i2) + b. Define
Q[finite 0-sequence of N] ≡ 1 ·$1(i1) = a ·$1(i2)+b. {p : P[p]} = {q : Q[q]}.
�

(16) {p : a · p(i1) 6= b · p(i2) + c} is a diophantine subset of the n-xtuples of N.
Proof: Define P[finite 0-sequence of N] ≡ a · $1(i1) > b · $1(i2) + c. Define
Q[finite 0-sequence of N] ≡ a · $1(i1) + −c < b · $1(i2). Define R[finite
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0-sequence of N] ≡ P[$1] or Q[$1]. Define S[finite 0-sequence of N] ≡
a ·$1(i1) 6= b ·$1(i2) + c. {p : P[p]} is a diophantine subset of the n-xtuples
of N. {p : Q[p]} is a diophantine subset of the n-xtuples of N. {p : P[p]
or Q[p]} is a diophantine subset of the n-xtuples of N. R[p] iff S[p]. {p
: R[p]} = {q : S[q]}. �

(17) {p : a · p(i1) > b · p(i2) · p(i3)} is a diophantine subset of the n-xtuples
of N.
Proof: Define P[natural number, natural number, integer] ≡ a ·$1 > $3+
0. Define F(natural number, natural number,natural number) = b ·$2 ·$3.
Define Q[finite 0-sequence of N] ≡ a · $1(i1) > b · $1(i2) · $1(i3) + 0. Define
R[finite 0-sequence of N] ≡ a · $1(i1) > b · $1(i2) · $1(i3).

For every n, i1, i2, i3, and c, {p : P[p(i1), p(i2), c · p(i3)]} is a diophan-
tine subset of the n-xtuples of N. For every n, i1, i2, i3, i4, and c, {p :
F(p(i1), p(i2), p(i3)) = c ·p(i4)} is a diophantine subset of the n-xtuples of
N. For every n, i1, i2, i3, i4, and i5, {p : P[p(i1), p(i2),F(p(i3), p(i4), p(i5))]}
is a diophantine subset of the n-xtuples of N. {p : Q[p]} = {q : R[q]}. �

Let us consider a, b, c, i1, i2, and i3. Now we state the propositions:

(18) {p : a ·p(i1) < b ·p(i2)+ c ·p(i3)} is a diophantine subset of the n-xtuples
of N.
Proof: Define P[natural number, natural number, integer] ≡ a · $1 + 0 <
$3. Define F(natural number, natural number, natural number) = b · $2 +
c · $3 + 0. Define Q[finite 0-sequence of N] ≡ a · $1(i1) + 0 < b · $1(i2) + c ·
$1(i3)+0. Define R[finite 0-sequence of N] ≡ a·$1(i1) < b·$1(i2)+c·$1(i3).
For every n, i1, i2, i3, and d, {p : P[p(i1), p(i2), d · p(i3)]} is a diophantine
subset of the n-xtuples of N.

For every n, i1, i2, i3, i4, and d, {p : F(p(i1), p(i2), p(i3)) = d · p(i4)}
is a diophantine subset of the n-xtuples of N. For every n, i1, i2, i3, i4,
and i5, {p : P[p(i1), p(i2),F(p(i3), p(i4), p(i5))]} is a diophantine subset of
the n-xtuples of N. {p : Q[p]} = {q : R[q]}. �

(19) {p : a ·p(i1) = b ·p(i2)−′ c ·p(i3)} is a diophantine subset of the n-xtuples
of N.
Proof: Define P[finite 0-sequence of N] ≡ a · $1(i1) = b · $1(i2) + (−c) ·
$1(i3)+0. Define Q[finite 0-sequence of N] ≡ b·$1(i2)  c·$1(i3)+0. Define
R[finite 0-sequence of N] ≡ a · $1(i1) = 0 · $1(i2) · $1(i3). Define S[finite
0-sequence of N] ≡ b · $1(i2) + 0 < c · $1(i3). Define U [finite 0-sequence of
N] ≡ P[$1] and Q[$1]. {p : P[p]} is a diophantine subset of the n-xtuples
of N. {p : Q[p]} is a diophantine subset of the n-xtuples of N. {p : P[p]
and Q[p]} is a diophantine subset of the n-xtuples of N.

Define W[finite 0-sequence of N] ≡ R[$1] and S[$1]. {p : R[p]} is
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a diophantine subset of the n-xtuples of N. {p : S[p]} is a diophantine
subset of the n-xtuples of N. {p : R[p] and S[p]} is a diophantine subset
of the n-xtuples of N. Define V[finite 0-sequence of N] ≡ U [$1] or W[$1].
Define T [finite 0-sequence of N] ≡ a · $1(i1) = b · $1(i2) −′ c · $1(i3). {p :
U [p] or W[p]} is a diophantine subset of the n-xtuples of N. V[p] iff T [p].
{p : V[p]} = {q : T [q]}. �

(20) {p : a ·p(i1) = b ·p(i2)−′ c} is a diophantine subset of the n-xtuples of N.
Proof: Define P[natural number,natural number, integer] ≡ a · $1 =
b·$2−′$3. For every n, i1, i2, i3, and d, {p : P[p(i1), p(i2), d·p(i3)]} is a dio-
phantine subset of the n-xtuples of N. Define F(natural number, natural
number, natural number) = c. For every n, i1, i2, i3, i4, and d, {p :
F(p(i1), p(i2), p(i3)) = d ·p(i4)} is a diophantine subset of the n-xtuples of
N. For every n, i1, i2, i3, i4, and i5, {p : P[p(i1), p(i2),F(p(i3), p(i4), p(i5))]}
is a diophantine subset of the n-xtuples of N. �

(21) {p : a · p(i1) ≡ b · p(i2) (mod c · p(i3))} is a diophantine subset of the n-
xtuples of N.
Proof: Define P[finite 0-sequence of N] ≡ there exists a natural number
z such that a · $1(i1) = b · $1(i2) + z · c · $1(i3). Define Q[finite 0-sequence
of N] ≡ there exists a natural number z such that b · $1(i2) = a · $1(i1) +
z · c · $1(i3). {p : P[p]} is a diophantine subset of the n-xtuples of N. {p
: Q[p]} is a diophantine subset of the n-xtuples of N. {p : P[p] or Q[p]}
is a diophantine subset of the n-xtuples of N. Set P = {p : a · p(i1) ≡
b · p(i2) (mod c · p(i3))}. P ⊆ {p : P[p] or Q[p]}. {p : P[p] or Q[p]} ⊆ P . �

(22) {p : 〈〈a·p(i1), b·p(i2)〉〉 is Pell’s solution of (c·p(i3))2−′1} is a diophantine
subset of the n-xtuples of N. The theorem is a consequence of (2), (3), (9),
(20), (6), (5), and (4).

3. Main Lemmas

Let us consider i1, i2, and i3. Now we state the propositions:

(23) {p : p(i1) = yp(i2)(p(i3)) and p(i2) > 1} is a diophantine subset of the n-
xtuples of N. The theorem is a consequence of (2), (3), (7), (22), (8), (21),
(14), (12), (9), (5), and (4).

(24) {p : p(i2) = p(i1)
p(i3)} is a diophantine subset of the n-xtuples of N. The

theorem is a consequence of (2), (3), (14), (7), (6), (9), (23), (17), (8),
(18), (5), and (4).
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