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Summary. In the paper we give a formalization in the Mizar system [2,
1] of the rules of an inference system for an extended Floyd-Hoare logic with
partial pre- and post-conditions which was proposed in [7, 9]. The rules are
formalized on the semantic level. The details of the approach used to implement
this formalization are described in [5].

We formalize the notion of a semantic Floyd-Hoare triple (for an extended
Floyd-Hoare logic with partial pre- and post-conditions) [5] which is a triple of
a pre-condition represented by a partial predicate, a program, represented by
a partial function which maps data to data, and a post-condition, represented by
a partial predicate, which informally means that if the pre-condition on a pro-
gram’s input data is defined and true, and the program’s output after a run on
this data is defined (a program terminates successfully), and the post-condition
is defined on the program’s output, then the post-condition is true.

We formalize and prove the soundness of the rules of the inference system
[9, 7] for such semantic Floyd-Hoare triples. For reasoning about sequential com-
position of programs and while loops we use the rules proposed in [3].

The formalized rules can be used for reasoning about sequential programs,
and in particular, for sequential programs on nominative data [4]. Application
of these rules often requires reasoning about partial predicates representing pre-
and post-conditions which can be done using the formalized results on the Kleene
algebra of partial predicates given in [8].
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From now on v, x denote objects, D, V , A denote sets, n denotes a natural
number, p, q denote partial predicates of D, and f , g denote binominative
functions of D.

Let us consider D, f , and p. We say that f coincides with p if and only if

(Def. 1) for every element d of D such that d ∈ dom p holds f(d) ∈ dom p.

Let us consider g and q. We say that f and g coincide with p and q if and
only if

(Def. 2) for every element d of D such that d ∈ rng f and g(d) ∈ dom q holds
d ∈ dom p.

Now we state the propositions:

(1) f coincides with ⊥PP(D).

(2) idPP(D) coincides with p.

Let us consider D, p, and q. We say that p |= q if and only if

(Def. 3) for every element d of D such that d ∈ dom p and p(d) = true holds
d ∈ dom q and q(d) = true.

Observe that the predicate is reflexive.
In the sequel D denotes a non empty set, d denotes an element of D, f , g

denote binominative functions of D, and p, q, r, s denote partial predicates of
D.

Now we state the propositions:

(3) If p |= r, then p ∧ q |= r.
(4) p ∧ q |= p.
(5) If p |= q and r |= s, then p ∧ r |= q ∧ s.
(6) If p ∨ q |= r, then p |= r.
(7) Suppose p |= q ∨ r. If d ∈ dom p and p(d) = true, then d ∈ dom q and
q(d) = true or d ∈ dom r and r(d) = true.

(8) p ∨ p |= p.
(9) If p |= q and r |= s, then p ∨ r |= q ∨ s.

(10) If p ∨ q |= r, then p ∧ q |= r.
Let us considerD. The functor SemanticFloydHoareTriples(D) yielding a set

is defined by the term

(Def. 4) {〈p, f, q〉, where p, q are partial predicates of D, f is a binominative
function of D : for every element d of D such that d ∈ dom p and p(d) =
true and d ∈ dom f and f(d) ∈ dom q holds q(f(d)) = true}.

http://fm.mizar.org/miz/nomin_3.miz
http://ftp.mizar.org/
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We introduce the notation SFHTs(D) as a synonym of
SemanticFloydHoareTriples(D).
Now we state the propositions:

(11) Suppose 〈p, f, q〉 ∈ SFHTs(D). If d ∈ dom p and p(d) = true and d ∈
dom f and f(d) ∈ dom q, then q(f(d)) = true.

(12) 〈∅, f, p〉 ∈ SFHTs(D).

Let us consider D. Observe that SFHTs(D) is non empty.
A semantic Floyd-Hoare triple of D is an element of
SemanticFloydHoareTriples(D).
An SFHT of D is an element of SFHTs(D). Now we state the propositions:

(13) 〈p, iddom p, p〉 is an SFHT of D.

(14) 〈p, idfield f , p〉 is an SFHT of D.

(15) CONS1 rule:
If 〈p, f, q〉 is an SFHT of D and r |= p, then 〈r, f, q〉 is an SFHT of D. The
theorem is a consequence of (11).

(16) CONS2 rule:
Suppose 〈p, f, q〉 is an SFHT of D and q |= r and dom r ⊆ dom q. Then
〈p, f, r〉 is an SFHT of D. The theorem is a consequence of (11).

(17) Skip rule:
〈p, idPP(D), p〉 is an SFHT of D.

(18) 〈falsePP(D), f, p〉 is an SFHT of D.

(19) Inversion rule:
If p is total, then 〈∼ p, f, q〉 is an SFHT ofD. The theorem is a consequence
of (18) and (15).

(20) Composition rule:
Suppose 〈p, f, q〉 is an SFHT of D and 〈q, g, r〉 is an SFHT of D and f and
g coincide with q and r. Then 〈p, f • g, r〉 is an SFHT of D.
Proof: Set F = f • g. For every d such that d ∈ dom p and p(d) = true
and d ∈ domF and F (d) ∈ dom r holds r(F (d)) = true. �

(21) IF rule:
Suppose 〈r ∧ p, f, q〉 is an SFHT of D and 〈¬r ∧ p, g, q〉 is an SFHT of D.
Then 〈p, IF(r, f, g), q〉 is an SFHT of D.
Proof: Set F = IF(r, f, g). For every d such that d ∈ dom p and p(d) =
true and d ∈ domF and F (d) ∈ dom q holds q(F (d)) = true. �

(22) If f coincides with p and 〈p, f, p〉 is an SFHT of D, then 〈p, fn, p〉 is
an SFHT of D.
Proof: Define P[natural number] ≡ 〈p, f$1 , p〉 is an SFHT of D. P[0]. For
every natural number k such that P[k] holds P[k + 1]. For every natural
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number k, P[k]. �

(23) WHILE rule:
Suppose f coincides with p and dom p ⊆ dom f and 〈r∧p, f, p〉 is an SFHT
of D. Then 〈p,WH(r, f),¬r ∧ p〉 is an SFHT of D.
Proof: Set F = WH(r, f). Set q = ¬r∧p. For every d such that d ∈ dom p
and p(d) = true and d ∈ domF and F (d) ∈ dom q holds q(F (d)) = true.
�

(24) Unconditional composition rule (USEQ):
Suppose 〈p, f, q〉 is an SFHT of D and 〈q, g, r〉 is an SFHT of D and 〈∼ q,
g, s〉 is an SFHT of D. Then 〈p, f • g, r ∨ s〉 is an SFHT of D.
Proof: Set F = f • g. For every d such that d ∈ dom p and p(d) = true
and d ∈ domF and F (d) ∈ dom(r ∨ s) holds (r ∨ s)(F (d)) = true. �

(25) Unconditional WHILE rule (UWH):
Suppose 〈r∧ p, f, p〉 is an SFHT of D and 〈r∧ ∼ p, f, p〉 is an SFHT of D.
Then 〈p,WH(r, f),¬r ∧ p〉 is an SFHT of D.
Proof: Set F = WH(r, f). Set q = ¬r∧p. For every d such that d ∈ dom p
and p(d) = true and d ∈ domF and F (d) ∈ dom q holds q(F (d)) = true.
�

(26) DP rule:
Suppose 〈p, f, r〉 is an SFHT of D and 〈q, f, r〉 is an SFHT of D. Then
〈p ∨ q, f, r〉 is an SFHT of D.
Proof: Set P = p ∨ q. For every d such that d ∈ domP and P (d) = true
and d ∈ dom f and f(d) ∈ dom r holds r(f(d)) = true. �

In the sequel p, q denote partial predicates over simple-named complex-
valued nominative date of V and A, f , g denote binominative functions over
simple-named complex-valued nominative date of V and A, E denotes a (V,A)-
FPrg-yielding finite sequence, e denotes an element of

∏
E, and d denotes a no-

minative data with simple names from V and complex values from A.
Now we state the proposition:

(27) Suppose for every nominative data d with simple names from V and
complex values from A such that d ∈ dom p and p(d) = true and d ∈ dom f
and f(d) ∈ dom q holds q(f(d)) = true. Then 〈p, f, q〉 is an SFHT of
NDSC(V,A).
Proof: For every element d of NDSC(V,A) such that d ∈ dom p and
p(d) = true and d ∈ dom f and f(d) ∈ dom q holds q(f(d)) = true. �

(28) Assignment rule:
〈SP(p, f, v),Asgv(f), p〉 is an SFHT of NDSC(V,A).
Proof: Set P = SP(p, f, v). Set F = Asgv(f). For every d such that
d ∈ domP and P (d) = true and d ∈ domF and F (d) ∈ dom p holds
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p(F (d)) = true by [6, 34]. �

(29) SFID1 rule:
〈SP(p, f, v), SF(idPP(NDSC(V,A)), f, v), p〉 is an SFHT of NDSC(V,A).
Proof: Set I = idPP(NDSC(V,A)). Set P = SP(p, f, v). Set F = SF(I, f, v).
For every d such that d ∈ domP and P (d) = true and d ∈ domF and
F (d) ∈ dom p holds p(F (d)) = true. �

(30) SFID rule:
Suppose

∏
E 6= ∅. Then 〈SP(p, e, E),SF(idPP(NDSC(V,A)), e, E), p〉 is

an SFHT of NDSC(V,A).
Proof: Set I = idPP(NDSC(V,A)). Set P = SP(p, e, E). Set F = SF(I, e, E).
For every d such that d ∈ domP and P (d) = true and d ∈ domF and
F (d) ∈ dom p holds p(F (d)) = true. �

(31) SF1 rule:
Suppose 〈p,SF(idPP(NDSC(V,A)), g, v) • f, q〉 is an SFHT of NDSC(V,A).
Then 〈p,SF(f, g, v), q〉 is an SFHT of NDSC(V,A).
Proof: Set I = idPP(NDSC(V,A)). Set F = SF(f, g, v). SetG = SF(I, g, v).
Set C = G • f . For every d such that d ∈ dom p and p(d) = true and
d ∈ domC and C(d) ∈ dom q holds q(C(d)) = true. For every d such
that d ∈ dom p and p(d) = true and d ∈ domF and F (d) ∈ dom q holds
q(F (d)) = true. �

(32) SF rule:
Suppose

∏
E 6= ∅ and 〈p,SF(idPP(NDSC(V,A)), e, E)•f, q〉 is an SFHT of

NDSC(V,A). Then 〈p,SF(f, e, E), q〉 is an SFHT of NDSC(V,A).
Proof: Set I = idPP(NDSC(V,A)). Set F = SF(f, e, E). SetG = SF(I, e, E).
Set C = G • f . For every d such that d ∈ dom p and p(d) = true and
d ∈ domC and C(d) ∈ dom q holds q(C(d)) = true. For every d such
that d ∈ dom p and p(d) = true and d ∈ domF and F (d) ∈ dom q holds
q(F (d)) = true. �
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