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Summary. This paper continues formalization in Mizar [2, 1] of basic
notions of the composition-nominative approach to program semantics [13] which
was started in [8, 11].

The composition-nominative approach studies mathematical models of com-
puter programs and data on various levels of abstraction and generality and
provides tools for reasoning about their properties. Besides formalization of se-
mantics of programs, certain elements of the composition-nominative approach
were applied to abstract systems in a mathematical systems theory [4, 6, 7, 5, 3].

In the paper we introduce a definition of the notion of a binominative function
over a setD understood as a partial function which maps elements ofD toD. The
sets of binominative functions and nominative predicates [11] over given sets form
the carrier of the generalized Glushkov algorithmic algebra [14]. This algebra can
be used to formalize algorithms which operate on various data structures (such
as multidimensional arrays, lists, etc.) and reason about their properties.

We formalize the operations of this algebra (also called compositions) which
are valid over uninterpretated data and which include among others the sequ-
ential composition, the prediction composition, the branching composition, the
monotone Floyd-Hoare composition, and the cycle composition. The details on
formalization of nominative data and the operations of the algorithmic algebra
over them are described in [10, 12, 9].
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1. Preliminaries

From now on x denotes an object and n denotes a natural number.
Let X, Y be sets. Observe that every element of X→̇Y is X-defined and

every element of X→̇Y is Y -valued.
Now we state the proposition:

(1) Let us consider sets X, Y, Z, T , objects x, y, z, and a function f from
X ×Y ×Z into T . Suppose x ∈ X and y ∈ Y and z ∈ Z and T 6= ∅. Then
f(x, y, z) ∈ T .

One can verify that there exists a set which is non empty and has not non
empty elements.

LetA,B, C be sets. The functor ·(A,B,C) yielding a function from (A→̇B)×
(B→̇C) into A→̇C is defined by

(Def. 1) for every partial function f from A to B and for every partial function
g from B to C, it(f, g) = g · f .

From now on D denotes a non empty set and p, q denote partial predicates
of D.

Now we state the propositions:

(2) If q is total, then dom p ⊆ dom(p ∨ q).
(3) If q is total, then dom p ⊆ dom(p ∧ q).
(4) If q is total, then dom p ⊆ dom(p⇒ q).

2. Operations in Algebras of Algorithms and Specifications over
Uninterpreted Data

From now on D denotes a set.
Let us consider D. The functor FPrg(D) yielding a set is defined by the term

(Def. 2) D→̇D.

Observe that FPrg(D) is non empty and functional.
A binominative function of D is a partial function from D to D. Now we

state the proposition:

(5) Let us consider a non empty set D, and a binominative function f of D.
Then idfield f is a binominative function of D.

In the sequel p, q denote partial predicates ofD and f , g denote binominative
functions of D.

Let us consider D and p. Let F be a function from Pr(D) into Pr(D). One
can check that F (p) is function-like and relation-like.
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Let p be an element of Pr(D). One can check that F (p) is function-like and
relation-like.

Let us consider p and q. Let F be a function from Pr(D)×Pr(D) into Pr(D).
Observe that F (p, q) is function-like and relation-like.

Let p, q be elements of Pr(D). One can check that F (p, q) is function-like
and relation-like.

Let x be an element of Pr(D) × Pr(D). Observe that F (x) is function-like
and relation-like.

Let us consider f . Let F be a function from FPrg(D) into FPrg(D). Let us
observe that F (f) is function-like and relation-like.

Let us consider p and g. Let F be a function from Pr(D)×FPrg(D)×FPrg(D)
into FPrg(D). One can check that F (p, f, g) is function-like and relation-like
and F (〈〈p, f, g〉〉) is function-like and relation-like.

Let us consider q. Let F be a function from Pr(D)× FPrg(D)×Pr(D) into
Pr(D). One can check that F (p, f, q) is function-like and relation-like and F (〈〈p,
f, q〉〉) is function-like and relation-like.

Let D be a set. We introduce the notation idPP(D) as a synonym of idD.
One can verify that the functor idPP(D) yields a binominative function of

D. Let D be a non empty set and d be an element of D. The functor idPP(d)
yielding an element of D is defined by the term

(Def. 3) idPP(D)(d).

Let us consider D. The functor •(D) yielding a function from FPrg(D) ×
FPrg(D) into FPrg(D) is defined by the term

(Def. 4) ·(D,D,D).

Let us consider D, f , and g. The functor f • g yielding a binominative
function of D is defined by the term

(Def. 5) •(D)(f, g).

Let us consider D. The functor ·(D) yielding a function from FPrg(D) ×
Pr(D) into Pr(D) is defined by the term

(Def. 6) ·(D,D,Boolean).

Let us consider D, f , and p. The functor f · p yielding a partial predicate of
D is defined by the term

(Def. 7) ·(D)(f, p).

Let F be a function from Pr(D)× FPrg(D)× FPrg(D) into FPrg(D), p be
a partial predicate of D, and f , g be binominative functions of D. One can check
that F (p, f, g) is function-like and relation-like.

Now we state the proposition:
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(6) If x ∈ dom(f ·p), then x ∈ dom(p ·f) and ((p ·f)(x) = true or (p ·f)(x) =
false).

The scheme PredToNomPredEx deals with a set D and a set D1 and a unary
predicate P and states that

(Sch. 1) There exists a partial predicate p of D such that dom p = D1 and for
every object d such that d ∈ dom p holds if P[d], then p(d) = true and if
not P[d], then p(d) = false

provided

• D1 ⊆ D.

The scheme PredToNomPredUnique deals with a set D and a set D1 and a
unary predicate P and states that

(Sch. 2) For every partial predicates p, q of D such that dom p = D1 and for every
object d such that d ∈ dom p holds if P[d], then p(d) = true and if not
P[d], then p(d) = false and dom q = D1 and for every object d such that
d ∈ dom q holds if P[d], then q(d) = true and if not P[d], then q(d) = false
holds p = q.

Let us consider D. The functor isEmpty(D) yielding a partial predicate of
D is defined by

(Def. 8) dom it = D and for every object d such that d ∈ dom it holds if d = ∅,
then it(d) = true and if d 6= ∅, then it(d) = false.

Let D be a set with non non empty elements. The functor EmptyD yielding
a binominative function of D is defined by the term

(Def. 9) D 7−→ ∅.
Let us consider D. The functor ⊥D yielding a binominative function of D is

defined by the term

(Def. 10) ∅.
In the sequel D denotes a non empty set, p, q denote partial predicates of

D, and f , g, h denote binominative functions of D.
Let us consider D. The functor IF(D) yielding a function from Pr(D) ×

FPrg(D)× FPrg(D) into FPrg(D) is defined by

(Def. 11) for every partial predicate p of D and for every binominative functions f ,
g of D, dom it(p, f, g) = {d, where d is an element of D : d ∈ dom p and
p(d) = true and d ∈ dom f or d ∈ dom p and p(d) = false and d ∈ dom g}
and for every object d, if d ∈ dom p and p(d) = true and d ∈ dom f , then
it(p, f, g)(d) = f(d) and if d ∈ dom p and p(d) = false and d ∈ dom g,
then it(p, f, g)(d) = g(d).
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Let us considerD, p, f , and g. The functor IF(p, f, g) yielding a binominative
function of D is defined by the term

(Def. 12) IF(D)(p, f, g).

Now we state the proposition:

(7) Suppose x ∈ dom(IF(p, f, g)). Then

(i) x ∈ dom p and p(x) = true and x ∈ dom f , or

(ii) x ∈ dom p and p(x) = false and x ∈ dom g.

Let us consider D. The functor FH(D) yielding a function from Pr(D) ×
FPrg(D)× Pr(D) into Pr(D) is defined by

(Def. 13) for every partial predicates p, q of D and for every binominative function
f of D, dom it(p, f, q) = {d, where d is an element of D : d ∈ dom p and
p(d) = false or d ∈ dom(q · f) and (q · f)(d) = true or d ∈ dom p and
p(d) = true and d ∈ dom(q ·f) and (q ·f)(d) = false} and for every object
d, if d ∈ dom p and p(d) = false or d ∈ dom(q ·f) and (q ·f)(d) = true, then
it(p, f, q)(d) = true and if d ∈ dom p and p(d) = true and d ∈ dom(q · f)
and (q · f)(d) = false, then it(p, f, q)(d) = false.

Let us consider D, p, q, and f . The functor FH(p, f, q) yielding a partial
predicate of D is defined by the term

(Def. 14) FH(D)(p, f, q).

Now we state the proposition:

(8) Suppose x ∈ dom(FH(p, f, q)). Then

(i) x ∈ dom p and p(x) = false, or

(ii) x ∈ dom(q · f) and (q · f)(x) = true, or

(iii) x ∈ dom p and p(x) = true and x ∈ dom(q · f) and (q · f)(x) = false.

Let us consider D. The functor WH(D) yielding a function from Pr(D) ×
FPrg(D) into FPrg(D) is defined by

(Def. 15) for every partial predicate p ofD and for every binominative function f of
D, dom it(p, f) = {d, where d is an element of D : there exists a natural
number n such that for every natural number i such that i ¬ n−1 holds
d ∈ dom(p · (f i)) and (p · (f i))(d) = true and d ∈ dom(p · (fn)) and
(p · (fn))(d) = false} and for every object d such that d ∈ dom it(p, f)
there exists a natural number n such that for every natural number i
such that i ¬ n − 1 holds d ∈ dom(p · (f i)) and (p · (f i))(d) = true and
d ∈ dom(p · (fn)) and (p · (fn))(d) = false and it(p, f)(d) = (fn)(d).

Let us consider D, p, and f . The functor WH(p, f) yielding a binominative
function of D is defined by the term

(Def. 16) WH(D)(p, f).
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The functor ∼ D yielding a function from Pr(D) into Pr(D) is defined by

(Def. 17) for every partial predicate p ofD, dom(it(p)) = {d, where d is an element
of D : d /∈ dom p} and for every element d of D such that d /∈ dom p holds
it(p)(d) = true.

Let D be a non empty set and p be a partial predicate of D. The functor
∼ p yielding a partial predicate of D is defined by the term

(Def. 18) (∼ D)(p).

Now we state the propositions:

(9) Let us consider an element d of D. Then d ∈ dom p if and only if d /∈
dom(∼ p).

(10) If p is total, then dom(∼ p) = ∅.
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